chore: model.query change to db.session.query (#19551)

Co-authored-by: QuantumGhost <obelisk.reg+git@gmail.com>
This commit is contained in:
非法操作
2025-05-13 09:13:12 +08:00
committed by GitHub
parent f1e7099541
commit 085bd1aa93
10 changed files with 74 additions and 32 deletions

View File

@@ -1,3 +1,4 @@
import logging
from typing import Optional
from core.model_manager import ModelInstance, ModelManager
@@ -12,6 +13,8 @@ from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegm
from models.dataset import Document as DatasetDocument
from services.entities.knowledge_entities.knowledge_entities import ParentMode
_logger = logging.getLogger(__name__)
class VectorService:
@classmethod
@@ -22,7 +25,14 @@ class VectorService:
for segment in segments:
if doc_form == IndexType.PARENT_CHILD_INDEX:
document = DatasetDocument.query.filter_by(id=segment.document_id).first()
document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
if not document:
_logger.warning(
"Expected DatasetDocument record to exist, but none was found, document_id=%s, segment_id=%s",
segment.document_id,
segment.id,
)
continue
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
@@ -52,7 +62,7 @@ class VectorService:
raise ValueError("The knowledge base index technique is not high quality!")
cls.generate_child_chunks(segment, document, dataset, embedding_model_instance, processing_rule, False)
else:
document = Document(
document = Document( # type: ignore
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
@@ -64,7 +74,7 @@ class VectorService:
documents.append(document)
if len(documents) > 0:
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list) # type: ignore
@classmethod
def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):