Fix/remove tsne position test (#5858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
This commit is contained in:
@@ -4,10 +4,6 @@ import time
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.retrieval.retrival_methods import RetrievalMethod
|
||||
@@ -45,17 +41,6 @@ class HitTestingService:
|
||||
if not retrieval_model:
|
||||
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
|
||||
|
||||
# get embedding model
|
||||
model_manager = ModelManager()
|
||||
embedding_model = model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model=dataset.embedding_model
|
||||
)
|
||||
|
||||
embeddings = CacheEmbedding(embedding_model)
|
||||
|
||||
all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
@@ -80,20 +65,10 @@ class HitTestingService:
|
||||
db.session.add(dataset_query)
|
||||
db.session.commit()
|
||||
|
||||
return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
|
||||
return cls.compact_retrieve_response(dataset, query, all_documents)
|
||||
|
||||
@classmethod
|
||||
def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: list[Document]):
|
||||
text_embeddings = [
|
||||
embeddings.embed_query(query)
|
||||
]
|
||||
|
||||
text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
|
||||
|
||||
tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
|
||||
|
||||
query_position = tsne_position_data.pop(0)
|
||||
|
||||
def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
|
||||
i = 0
|
||||
records = []
|
||||
for document in documents:
|
||||
@@ -113,7 +88,6 @@ class HitTestingService:
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get('score', None),
|
||||
"tsne_position": tsne_position_data[i]
|
||||
}
|
||||
|
||||
records.append(record)
|
||||
@@ -123,7 +97,6 @@ class HitTestingService:
|
||||
return {
|
||||
"query": {
|
||||
"content": query,
|
||||
"tsne_position": query_position,
|
||||
},
|
||||
"records": records
|
||||
}
|
||||
|
Reference in New Issue
Block a user