refactor: move structured output support outside LLM Node (#21565)
Co-authored-by: Novice <novice12185727@gmail.com>
This commit is contained in:
374
api/core/llm_generator/output_parser/structured_output.py
Normal file
374
api/core/llm_generator/output_parser/structured_output.py
Normal file
@@ -0,0 +1,374 @@
|
||||
import json
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from copy import deepcopy
|
||||
from enum import StrEnum
|
||||
from typing import Any, Literal, Optional, cast, overload
|
||||
|
||||
import json_repair
|
||||
from pydantic import TypeAdapter, ValidationError
|
||||
|
||||
from core.llm_generator.output_parser.errors import OutputParserError
|
||||
from core.llm_generator.prompts import STRUCTURED_OUTPUT_PROMPT
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
from core.model_runtime.entities.llm_entities import (
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMResultChunkWithStructuredOutput,
|
||||
LLMResultWithStructuredOutput,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, ParameterRule
|
||||
|
||||
|
||||
class ResponseFormat(StrEnum):
|
||||
"""Constants for model response formats"""
|
||||
|
||||
JSON_SCHEMA = "json_schema" # model's structured output mode. some model like gemini, gpt-4o, support this mode.
|
||||
JSON = "JSON" # model's json mode. some model like claude support this mode.
|
||||
JSON_OBJECT = "json_object" # json mode's another alias. some model like deepseek-chat, qwen use this alias.
|
||||
|
||||
|
||||
class SpecialModelType(StrEnum):
|
||||
"""Constants for identifying model types"""
|
||||
|
||||
GEMINI = "gemini"
|
||||
OLLAMA = "ollama"
|
||||
|
||||
|
||||
@overload
|
||||
def invoke_llm_with_structured_output(
|
||||
provider: str,
|
||||
model_schema: AIModelEntity,
|
||||
model_instance: ModelInstance,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
json_schema: Mapping[str, Any],
|
||||
model_parameters: Optional[Mapping] = None,
|
||||
tools: Sequence[PromptMessageTool] | None = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: Literal[True] = True,
|
||||
user: Optional[str] = None,
|
||||
callbacks: Optional[list[Callback]] = None,
|
||||
) -> Generator[LLMResultChunkWithStructuredOutput, None, None]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def invoke_llm_with_structured_output(
|
||||
provider: str,
|
||||
model_schema: AIModelEntity,
|
||||
model_instance: ModelInstance,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
json_schema: Mapping[str, Any],
|
||||
model_parameters: Optional[Mapping] = None,
|
||||
tools: Sequence[PromptMessageTool] | None = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: Literal[False] = False,
|
||||
user: Optional[str] = None,
|
||||
callbacks: Optional[list[Callback]] = None,
|
||||
) -> LLMResultWithStructuredOutput: ...
|
||||
|
||||
|
||||
@overload
|
||||
def invoke_llm_with_structured_output(
|
||||
provider: str,
|
||||
model_schema: AIModelEntity,
|
||||
model_instance: ModelInstance,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
json_schema: Mapping[str, Any],
|
||||
model_parameters: Optional[Mapping] = None,
|
||||
tools: Sequence[PromptMessageTool] | None = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
callbacks: Optional[list[Callback]] = None,
|
||||
) -> LLMResultWithStructuredOutput | Generator[LLMResultChunkWithStructuredOutput, None, None]: ...
|
||||
|
||||
|
||||
def invoke_llm_with_structured_output(
|
||||
provider: str,
|
||||
model_schema: AIModelEntity,
|
||||
model_instance: ModelInstance,
|
||||
prompt_messages: Sequence[PromptMessage],
|
||||
json_schema: Mapping[str, Any],
|
||||
model_parameters: Optional[Mapping] = None,
|
||||
tools: Sequence[PromptMessageTool] | None = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
callbacks: Optional[list[Callback]] = None,
|
||||
) -> LLMResultWithStructuredOutput | Generator[LLMResultChunkWithStructuredOutput, None, None]:
|
||||
"""
|
||||
Invoke large language model with structured output
|
||||
1. This method invokes model_instance.invoke_llm with json_schema
|
||||
2. Try to parse the result as structured output
|
||||
|
||||
:param prompt_messages: prompt messages
|
||||
:param json_schema: json schema
|
||||
:param model_parameters: model parameters
|
||||
:param tools: tools for tool calling
|
||||
:param stop: stop words
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
:param callbacks: callbacks
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
|
||||
# handle native json schema
|
||||
model_parameters_with_json_schema: dict[str, Any] = {
|
||||
**(model_parameters or {}),
|
||||
}
|
||||
|
||||
if model_schema.support_structure_output:
|
||||
model_parameters = _handle_native_json_schema(
|
||||
provider, model_schema, json_schema, model_parameters_with_json_schema, model_schema.parameter_rules
|
||||
)
|
||||
else:
|
||||
# Set appropriate response format based on model capabilities
|
||||
_set_response_format(model_parameters_with_json_schema, model_schema.parameter_rules)
|
||||
|
||||
# handle prompt based schema
|
||||
prompt_messages = _handle_prompt_based_schema(
|
||||
prompt_messages=prompt_messages,
|
||||
structured_output_schema=json_schema,
|
||||
)
|
||||
|
||||
llm_result = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompt_messages),
|
||||
model_parameters=model_parameters_with_json_schema,
|
||||
tools=tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=user,
|
||||
callbacks=callbacks,
|
||||
)
|
||||
|
||||
if isinstance(llm_result, LLMResult):
|
||||
if not isinstance(llm_result.message.content, str):
|
||||
raise OutputParserError(
|
||||
f"Failed to parse structured output, LLM result is not a string: {llm_result.message.content}"
|
||||
)
|
||||
|
||||
return LLMResultWithStructuredOutput(
|
||||
structured_output=_parse_structured_output(llm_result.message.content),
|
||||
model=llm_result.model,
|
||||
message=llm_result.message,
|
||||
usage=llm_result.usage,
|
||||
system_fingerprint=llm_result.system_fingerprint,
|
||||
prompt_messages=llm_result.prompt_messages,
|
||||
)
|
||||
else:
|
||||
|
||||
def generator() -> Generator[LLMResultChunkWithStructuredOutput, None, None]:
|
||||
result_text: str = ""
|
||||
prompt_messages: Sequence[PromptMessage] = []
|
||||
system_fingerprint: Optional[str] = None
|
||||
for event in llm_result:
|
||||
if isinstance(event, LLMResultChunk):
|
||||
if isinstance(event.delta.message.content, str):
|
||||
result_text += event.delta.message.content
|
||||
prompt_messages = event.prompt_messages
|
||||
system_fingerprint = event.system_fingerprint
|
||||
|
||||
yield LLMResultChunkWithStructuredOutput(
|
||||
model=model_schema.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=system_fingerprint,
|
||||
delta=event.delta,
|
||||
)
|
||||
|
||||
yield LLMResultChunkWithStructuredOutput(
|
||||
structured_output=_parse_structured_output(result_text),
|
||||
model=model_schema.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint=system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content=""),
|
||||
usage=None,
|
||||
finish_reason=None,
|
||||
),
|
||||
)
|
||||
|
||||
return generator()
|
||||
|
||||
|
||||
def _handle_native_json_schema(
|
||||
provider: str,
|
||||
model_schema: AIModelEntity,
|
||||
structured_output_schema: Mapping,
|
||||
model_parameters: dict,
|
||||
rules: list[ParameterRule],
|
||||
) -> dict:
|
||||
"""
|
||||
Handle structured output for models with native JSON schema support.
|
||||
|
||||
:param model_parameters: Model parameters to update
|
||||
:param rules: Model parameter rules
|
||||
:return: Updated model parameters with JSON schema configuration
|
||||
"""
|
||||
# Process schema according to model requirements
|
||||
schema_json = _prepare_schema_for_model(provider, model_schema, structured_output_schema)
|
||||
|
||||
# Set JSON schema in parameters
|
||||
model_parameters["json_schema"] = json.dumps(schema_json, ensure_ascii=False)
|
||||
|
||||
# Set appropriate response format if required by the model
|
||||
for rule in rules:
|
||||
if rule.name == "response_format" and ResponseFormat.JSON_SCHEMA.value in rule.options:
|
||||
model_parameters["response_format"] = ResponseFormat.JSON_SCHEMA.value
|
||||
|
||||
return model_parameters
|
||||
|
||||
|
||||
def _set_response_format(model_parameters: dict, rules: list) -> None:
|
||||
"""
|
||||
Set the appropriate response format parameter based on model rules.
|
||||
|
||||
:param model_parameters: Model parameters to update
|
||||
:param rules: Model parameter rules
|
||||
"""
|
||||
for rule in rules:
|
||||
if rule.name == "response_format":
|
||||
if ResponseFormat.JSON.value in rule.options:
|
||||
model_parameters["response_format"] = ResponseFormat.JSON.value
|
||||
elif ResponseFormat.JSON_OBJECT.value in rule.options:
|
||||
model_parameters["response_format"] = ResponseFormat.JSON_OBJECT.value
|
||||
|
||||
|
||||
def _handle_prompt_based_schema(
|
||||
prompt_messages: Sequence[PromptMessage], structured_output_schema: Mapping
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
Handle structured output for models without native JSON schema support.
|
||||
This function modifies the prompt messages to include schema-based output requirements.
|
||||
|
||||
Args:
|
||||
prompt_messages: Original sequence of prompt messages
|
||||
|
||||
Returns:
|
||||
list[PromptMessage]: Updated prompt messages with structured output requirements
|
||||
"""
|
||||
# Convert schema to string format
|
||||
schema_str = json.dumps(structured_output_schema, ensure_ascii=False)
|
||||
|
||||
# Find existing system prompt with schema placeholder
|
||||
system_prompt = next(
|
||||
(prompt for prompt in prompt_messages if isinstance(prompt, SystemPromptMessage)),
|
||||
None,
|
||||
)
|
||||
structured_output_prompt = STRUCTURED_OUTPUT_PROMPT.replace("{{schema}}", schema_str)
|
||||
# Prepare system prompt content
|
||||
system_prompt_content = (
|
||||
structured_output_prompt + "\n\n" + system_prompt.content
|
||||
if system_prompt and isinstance(system_prompt.content, str)
|
||||
else structured_output_prompt
|
||||
)
|
||||
system_prompt = SystemPromptMessage(content=system_prompt_content)
|
||||
|
||||
# Extract content from the last user message
|
||||
|
||||
filtered_prompts = [prompt for prompt in prompt_messages if not isinstance(prompt, SystemPromptMessage)]
|
||||
updated_prompt = [system_prompt] + filtered_prompts
|
||||
|
||||
return updated_prompt
|
||||
|
||||
|
||||
def _parse_structured_output(result_text: str) -> Mapping[str, Any]:
|
||||
structured_output: Mapping[str, Any] = {}
|
||||
parsed: Mapping[str, Any] = {}
|
||||
try:
|
||||
parsed = TypeAdapter(Mapping).validate_json(result_text)
|
||||
if not isinstance(parsed, dict):
|
||||
raise OutputParserError(f"Failed to parse structured output: {result_text}")
|
||||
structured_output = parsed
|
||||
except ValidationError:
|
||||
# if the result_text is not a valid json, try to repair it
|
||||
temp_parsed = json_repair.loads(result_text)
|
||||
if not isinstance(temp_parsed, dict):
|
||||
# handle reasoning model like deepseek-r1 got '<think>\n\n</think>\n' prefix
|
||||
if isinstance(temp_parsed, list):
|
||||
temp_parsed = next((item for item in temp_parsed if isinstance(item, dict)), {})
|
||||
else:
|
||||
raise OutputParserError(f"Failed to parse structured output: {result_text}")
|
||||
structured_output = cast(dict, temp_parsed)
|
||||
return structured_output
|
||||
|
||||
|
||||
def _prepare_schema_for_model(provider: str, model_schema: AIModelEntity, schema: Mapping) -> dict:
|
||||
"""
|
||||
Prepare JSON schema based on model requirements.
|
||||
|
||||
Different models have different requirements for JSON schema formatting.
|
||||
This function handles these differences.
|
||||
|
||||
:param schema: The original JSON schema
|
||||
:return: Processed schema compatible with the current model
|
||||
"""
|
||||
|
||||
# Deep copy to avoid modifying the original schema
|
||||
processed_schema = dict(deepcopy(schema))
|
||||
|
||||
# Convert boolean types to string types (common requirement)
|
||||
convert_boolean_to_string(processed_schema)
|
||||
|
||||
# Apply model-specific transformations
|
||||
if SpecialModelType.GEMINI in model_schema.model:
|
||||
remove_additional_properties(processed_schema)
|
||||
return processed_schema
|
||||
elif SpecialModelType.OLLAMA in provider:
|
||||
return processed_schema
|
||||
else:
|
||||
# Default format with name field
|
||||
return {"schema": processed_schema, "name": "llm_response"}
|
||||
|
||||
|
||||
def remove_additional_properties(schema: dict) -> None:
|
||||
"""
|
||||
Remove additionalProperties fields from JSON schema.
|
||||
Used for models like Gemini that don't support this property.
|
||||
|
||||
:param schema: JSON schema to modify in-place
|
||||
"""
|
||||
if not isinstance(schema, dict):
|
||||
return
|
||||
|
||||
# Remove additionalProperties at current level
|
||||
schema.pop("additionalProperties", None)
|
||||
|
||||
# Process nested structures recursively
|
||||
for value in schema.values():
|
||||
if isinstance(value, dict):
|
||||
remove_additional_properties(value)
|
||||
elif isinstance(value, list):
|
||||
for item in value:
|
||||
if isinstance(item, dict):
|
||||
remove_additional_properties(item)
|
||||
|
||||
|
||||
def convert_boolean_to_string(schema: dict) -> None:
|
||||
"""
|
||||
Convert boolean type specifications to string in JSON schema.
|
||||
|
||||
:param schema: JSON schema to modify in-place
|
||||
"""
|
||||
if not isinstance(schema, dict):
|
||||
return
|
||||
|
||||
# Check for boolean type at current level
|
||||
if schema.get("type") == "boolean":
|
||||
schema["type"] = "string"
|
||||
|
||||
# Process nested dictionaries and lists recursively
|
||||
for value in schema.values():
|
||||
if isinstance(value, dict):
|
||||
convert_boolean_to_string(value)
|
||||
elif isinstance(value, list):
|
||||
for item in value:
|
||||
if isinstance(item, dict):
|
||||
convert_boolean_to_string(item)
|
@@ -291,3 +291,21 @@ Your task is to convert simple user descriptions into properly formatted JSON Sc
|
||||
|
||||
Now, generate a JSON Schema based on my description
|
||||
""" # noqa: E501
|
||||
|
||||
STRUCTURED_OUTPUT_PROMPT = """You’re a helpful AI assistant. You could answer questions and output in JSON format.
|
||||
constraints:
|
||||
- You must output in JSON format.
|
||||
- Do not output boolean value, use string type instead.
|
||||
- Do not output integer or float value, use number type instead.
|
||||
eg:
|
||||
Here is the JSON schema:
|
||||
{"additionalProperties": false, "properties": {"age": {"type": "number"}, "name": {"type": "string"}}, "required": ["name", "age"], "type": "object"}
|
||||
|
||||
Here is the user's question:
|
||||
My name is John Doe and I am 30 years old.
|
||||
|
||||
output:
|
||||
{"name": "John Doe", "age": 30}
|
||||
Here is the JSON schema:
|
||||
{{schema}}
|
||||
""" # noqa: E501
|
||||
|
Reference in New Issue
Block a user