refactor: move structured output support outside LLM Node (#21565)

Co-authored-by: Novice <novice12185727@gmail.com>
This commit is contained in:
Yeuoly
2025-06-27 14:55:31 +08:00
committed by GitHub
parent cdb9eecbaf
commit 0cb00d5fd2
10 changed files with 503 additions and 276 deletions

View File

@@ -0,0 +1,374 @@
import json
from collections.abc import Generator, Mapping, Sequence
from copy import deepcopy
from enum import StrEnum
from typing import Any, Literal, Optional, cast, overload
import json_repair
from pydantic import TypeAdapter, ValidationError
from core.llm_generator.output_parser.errors import OutputParserError
from core.llm_generator.prompts import STRUCTURED_OUTPUT_PROMPT
from core.model_manager import ModelInstance
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import (
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
LLMResultChunkWithStructuredOutput,
LLMResultWithStructuredOutput,
)
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
SystemPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, ParameterRule
class ResponseFormat(StrEnum):
"""Constants for model response formats"""
JSON_SCHEMA = "json_schema" # model's structured output mode. some model like gemini, gpt-4o, support this mode.
JSON = "JSON" # model's json mode. some model like claude support this mode.
JSON_OBJECT = "json_object" # json mode's another alias. some model like deepseek-chat, qwen use this alias.
class SpecialModelType(StrEnum):
"""Constants for identifying model types"""
GEMINI = "gemini"
OLLAMA = "ollama"
@overload
def invoke_llm_with_structured_output(
provider: str,
model_schema: AIModelEntity,
model_instance: ModelInstance,
prompt_messages: Sequence[PromptMessage],
json_schema: Mapping[str, Any],
model_parameters: Optional[Mapping] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stream: Literal[True] = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
) -> Generator[LLMResultChunkWithStructuredOutput, None, None]: ...
@overload
def invoke_llm_with_structured_output(
provider: str,
model_schema: AIModelEntity,
model_instance: ModelInstance,
prompt_messages: Sequence[PromptMessage],
json_schema: Mapping[str, Any],
model_parameters: Optional[Mapping] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stream: Literal[False] = False,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
) -> LLMResultWithStructuredOutput: ...
@overload
def invoke_llm_with_structured_output(
provider: str,
model_schema: AIModelEntity,
model_instance: ModelInstance,
prompt_messages: Sequence[PromptMessage],
json_schema: Mapping[str, Any],
model_parameters: Optional[Mapping] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
) -> LLMResultWithStructuredOutput | Generator[LLMResultChunkWithStructuredOutput, None, None]: ...
def invoke_llm_with_structured_output(
provider: str,
model_schema: AIModelEntity,
model_instance: ModelInstance,
prompt_messages: Sequence[PromptMessage],
json_schema: Mapping[str, Any],
model_parameters: Optional[Mapping] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
) -> LLMResultWithStructuredOutput | Generator[LLMResultChunkWithStructuredOutput, None, None]:
"""
Invoke large language model with structured output
1. This method invokes model_instance.invoke_llm with json_schema
2. Try to parse the result as structured output
:param prompt_messages: prompt messages
:param json_schema: json schema
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:param callbacks: callbacks
:return: full response or stream response chunk generator result
"""
# handle native json schema
model_parameters_with_json_schema: dict[str, Any] = {
**(model_parameters or {}),
}
if model_schema.support_structure_output:
model_parameters = _handle_native_json_schema(
provider, model_schema, json_schema, model_parameters_with_json_schema, model_schema.parameter_rules
)
else:
# Set appropriate response format based on model capabilities
_set_response_format(model_parameters_with_json_schema, model_schema.parameter_rules)
# handle prompt based schema
prompt_messages = _handle_prompt_based_schema(
prompt_messages=prompt_messages,
structured_output_schema=json_schema,
)
llm_result = model_instance.invoke_llm(
prompt_messages=list(prompt_messages),
model_parameters=model_parameters_with_json_schema,
tools=tools,
stop=stop,
stream=stream,
user=user,
callbacks=callbacks,
)
if isinstance(llm_result, LLMResult):
if not isinstance(llm_result.message.content, str):
raise OutputParserError(
f"Failed to parse structured output, LLM result is not a string: {llm_result.message.content}"
)
return LLMResultWithStructuredOutput(
structured_output=_parse_structured_output(llm_result.message.content),
model=llm_result.model,
message=llm_result.message,
usage=llm_result.usage,
system_fingerprint=llm_result.system_fingerprint,
prompt_messages=llm_result.prompt_messages,
)
else:
def generator() -> Generator[LLMResultChunkWithStructuredOutput, None, None]:
result_text: str = ""
prompt_messages: Sequence[PromptMessage] = []
system_fingerprint: Optional[str] = None
for event in llm_result:
if isinstance(event, LLMResultChunk):
if isinstance(event.delta.message.content, str):
result_text += event.delta.message.content
prompt_messages = event.prompt_messages
system_fingerprint = event.system_fingerprint
yield LLMResultChunkWithStructuredOutput(
model=model_schema.model,
prompt_messages=prompt_messages,
system_fingerprint=system_fingerprint,
delta=event.delta,
)
yield LLMResultChunkWithStructuredOutput(
structured_output=_parse_structured_output(result_text),
model=model_schema.model,
prompt_messages=prompt_messages,
system_fingerprint=system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=""),
usage=None,
finish_reason=None,
),
)
return generator()
def _handle_native_json_schema(
provider: str,
model_schema: AIModelEntity,
structured_output_schema: Mapping,
model_parameters: dict,
rules: list[ParameterRule],
) -> dict:
"""
Handle structured output for models with native JSON schema support.
:param model_parameters: Model parameters to update
:param rules: Model parameter rules
:return: Updated model parameters with JSON schema configuration
"""
# Process schema according to model requirements
schema_json = _prepare_schema_for_model(provider, model_schema, structured_output_schema)
# Set JSON schema in parameters
model_parameters["json_schema"] = json.dumps(schema_json, ensure_ascii=False)
# Set appropriate response format if required by the model
for rule in rules:
if rule.name == "response_format" and ResponseFormat.JSON_SCHEMA.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON_SCHEMA.value
return model_parameters
def _set_response_format(model_parameters: dict, rules: list) -> None:
"""
Set the appropriate response format parameter based on model rules.
:param model_parameters: Model parameters to update
:param rules: Model parameter rules
"""
for rule in rules:
if rule.name == "response_format":
if ResponseFormat.JSON.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON.value
elif ResponseFormat.JSON_OBJECT.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON_OBJECT.value
def _handle_prompt_based_schema(
prompt_messages: Sequence[PromptMessage], structured_output_schema: Mapping
) -> list[PromptMessage]:
"""
Handle structured output for models without native JSON schema support.
This function modifies the prompt messages to include schema-based output requirements.
Args:
prompt_messages: Original sequence of prompt messages
Returns:
list[PromptMessage]: Updated prompt messages with structured output requirements
"""
# Convert schema to string format
schema_str = json.dumps(structured_output_schema, ensure_ascii=False)
# Find existing system prompt with schema placeholder
system_prompt = next(
(prompt for prompt in prompt_messages if isinstance(prompt, SystemPromptMessage)),
None,
)
structured_output_prompt = STRUCTURED_OUTPUT_PROMPT.replace("{{schema}}", schema_str)
# Prepare system prompt content
system_prompt_content = (
structured_output_prompt + "\n\n" + system_prompt.content
if system_prompt and isinstance(system_prompt.content, str)
else structured_output_prompt
)
system_prompt = SystemPromptMessage(content=system_prompt_content)
# Extract content from the last user message
filtered_prompts = [prompt for prompt in prompt_messages if not isinstance(prompt, SystemPromptMessage)]
updated_prompt = [system_prompt] + filtered_prompts
return updated_prompt
def _parse_structured_output(result_text: str) -> Mapping[str, Any]:
structured_output: Mapping[str, Any] = {}
parsed: Mapping[str, Any] = {}
try:
parsed = TypeAdapter(Mapping).validate_json(result_text)
if not isinstance(parsed, dict):
raise OutputParserError(f"Failed to parse structured output: {result_text}")
structured_output = parsed
except ValidationError:
# if the result_text is not a valid json, try to repair it
temp_parsed = json_repair.loads(result_text)
if not isinstance(temp_parsed, dict):
# handle reasoning model like deepseek-r1 got '<think>\n\n</think>\n' prefix
if isinstance(temp_parsed, list):
temp_parsed = next((item for item in temp_parsed if isinstance(item, dict)), {})
else:
raise OutputParserError(f"Failed to parse structured output: {result_text}")
structured_output = cast(dict, temp_parsed)
return structured_output
def _prepare_schema_for_model(provider: str, model_schema: AIModelEntity, schema: Mapping) -> dict:
"""
Prepare JSON schema based on model requirements.
Different models have different requirements for JSON schema formatting.
This function handles these differences.
:param schema: The original JSON schema
:return: Processed schema compatible with the current model
"""
# Deep copy to avoid modifying the original schema
processed_schema = dict(deepcopy(schema))
# Convert boolean types to string types (common requirement)
convert_boolean_to_string(processed_schema)
# Apply model-specific transformations
if SpecialModelType.GEMINI in model_schema.model:
remove_additional_properties(processed_schema)
return processed_schema
elif SpecialModelType.OLLAMA in provider:
return processed_schema
else:
# Default format with name field
return {"schema": processed_schema, "name": "llm_response"}
def remove_additional_properties(schema: dict) -> None:
"""
Remove additionalProperties fields from JSON schema.
Used for models like Gemini that don't support this property.
:param schema: JSON schema to modify in-place
"""
if not isinstance(schema, dict):
return
# Remove additionalProperties at current level
schema.pop("additionalProperties", None)
# Process nested structures recursively
for value in schema.values():
if isinstance(value, dict):
remove_additional_properties(value)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
remove_additional_properties(item)
def convert_boolean_to_string(schema: dict) -> None:
"""
Convert boolean type specifications to string in JSON schema.
:param schema: JSON schema to modify in-place
"""
if not isinstance(schema, dict):
return
# Check for boolean type at current level
if schema.get("type") == "boolean":
schema["type"] = "string"
# Process nested dictionaries and lists recursively
for value in schema.values():
if isinstance(value, dict):
convert_boolean_to_string(value)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
convert_boolean_to_string(item)

View File

@@ -291,3 +291,21 @@ Your task is to convert simple user descriptions into properly formatted JSON Sc
Now, generate a JSON Schema based on my description
""" # noqa: E501
STRUCTURED_OUTPUT_PROMPT = """Youre a helpful AI assistant. You could answer questions and output in JSON format.
constraints:
- You must output in JSON format.
- Do not output boolean value, use string type instead.
- Do not output integer or float value, use number type instead.
eg:
Here is the JSON schema:
{"additionalProperties": false, "properties": {"age": {"type": "number"}, "name": {"type": "string"}}, "required": ["name", "age"], "type": "object"}
Here is the user's question:
My name is John Doe and I am 30 years old.
output:
{"name": "John Doe", "age": 30}
Here is the JSON schema:
{{schema}}
""" # noqa: E501

View File

@@ -1,7 +1,7 @@
from collections.abc import Sequence
from collections.abc import Mapping, Sequence
from decimal import Decimal
from enum import StrEnum
from typing import Optional
from typing import Any, Optional
from pydantic import BaseModel, Field
@@ -101,6 +101,20 @@ class LLMResult(BaseModel):
system_fingerprint: Optional[str] = None
class LLMStructuredOutput(BaseModel):
"""
Model class for llm structured output.
"""
structured_output: Optional[Mapping[str, Any]] = None
class LLMResultWithStructuredOutput(LLMResult, LLMStructuredOutput):
"""
Model class for llm result with structured output.
"""
class LLMResultChunkDelta(BaseModel):
"""
Model class for llm result chunk delta.
@@ -123,6 +137,12 @@ class LLMResultChunk(BaseModel):
delta: LLMResultChunkDelta
class LLMResultChunkWithStructuredOutput(LLMResultChunk, LLMStructuredOutput):
"""
Model class for llm result chunk with structured output.
"""
class NumTokensResult(PriceInfo):
"""
Model class for number of tokens result.

View File

@@ -3,7 +3,11 @@ from binascii import hexlify, unhexlify
from collections.abc import Generator
from core.model_manager import ModelManager
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.llm_entities import (
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
)
from core.model_runtime.entities.message_entities import (
PromptMessage,
SystemPromptMessage,

View File

@@ -10,6 +10,9 @@ from core.tools.entities.common_entities import I18nObject
class PluginParameterOption(BaseModel):
value: str = Field(..., description="The value of the option")
label: I18nObject = Field(..., description="The label of the option")
icon: Optional[str] = Field(
default=None, description="The icon of the option, can be a url or a base64 encoded image"
)
@field_validator("value", mode="before")
@classmethod

View File

@@ -82,6 +82,16 @@ class RequestInvokeLLM(BaseRequestInvokeModel):
return v
class RequestInvokeLLMWithStructuredOutput(RequestInvokeLLM):
"""
Request to invoke LLM with structured output
"""
structured_output_schema: dict[str, Any] = Field(
default_factory=dict, description="The schema of the structured output in JSON schema format"
)
class RequestInvokeTextEmbedding(BaseRequestInvokeModel):
"""
Request to invoke text embedding

View File

@@ -5,11 +5,11 @@ import logging
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast
import json_repair
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.file import FileType, file_manager
from core.helper.code_executor import CodeExecutor, CodeLanguage
from core.llm_generator.output_parser.errors import OutputParserError
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities import (
@@ -18,7 +18,13 @@ from core.model_runtime.entities import (
PromptMessageContentType,
TextPromptMessageContent,
)
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMUsage
from core.model_runtime.entities.llm_entities import (
LLMResult,
LLMResultChunk,
LLMResultChunkWithStructuredOutput,
LLMStructuredOutput,
LLMUsage,
)
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageContentUnionTypes,
@@ -31,7 +37,6 @@ from core.model_runtime.entities.model_entities import (
ModelFeature,
ModelPropertyKey,
ModelType,
ParameterRule,
)
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
@@ -62,11 +67,6 @@ from core.workflow.nodes.event import (
RunRetrieverResourceEvent,
RunStreamChunkEvent,
)
from core.workflow.utils.structured_output.entities import (
ResponseFormat,
SpecialModelType,
)
from core.workflow.utils.structured_output.prompt import STRUCTURED_OUTPUT_PROMPT
from core.workflow.utils.variable_template_parser import VariableTemplateParser
from . import llm_utils
@@ -143,12 +143,6 @@ class LLMNode(BaseNode[LLMNodeData]):
return "1"
def _run(self) -> Generator[NodeEvent | InNodeEvent, None, None]:
def process_structured_output(text: str) -> Optional[dict[str, Any]]:
"""Process structured output if enabled"""
if not self.node_data.structured_output_enabled or not self.node_data.structured_output:
return None
return self._parse_structured_output(text)
node_inputs: Optional[dict[str, Any]] = None
process_data = None
result_text = ""
@@ -244,6 +238,8 @@ class LLMNode(BaseNode[LLMNodeData]):
stop=stop,
)
structured_output: LLMStructuredOutput | None = None
for event in generator:
if isinstance(event, RunStreamChunkEvent):
yield event
@@ -254,10 +250,12 @@ class LLMNode(BaseNode[LLMNodeData]):
# deduct quota
llm_utils.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
break
elif isinstance(event, LLMStructuredOutput):
structured_output = event
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
structured_output = process_structured_output(result_text)
if structured_output:
outputs["structured_output"] = structured_output
outputs["structured_output"] = structured_output.structured_output
if self._file_outputs is not None:
outputs["files"] = ArrayFileSegment(value=self._file_outputs)
@@ -302,7 +300,27 @@ class LLMNode(BaseNode[LLMNodeData]):
model_instance: ModelInstance,
prompt_messages: Sequence[PromptMessage],
stop: Optional[Sequence[str]] = None,
) -> Generator[NodeEvent, None, None]:
) -> Generator[NodeEvent | LLMStructuredOutput, None, None]:
model_schema = model_instance.model_type_instance.get_model_schema(
node_data_model.name, model_instance.credentials
)
if not model_schema:
raise ValueError(f"Model schema not found for {node_data_model.name}")
if self.node_data.structured_output_enabled:
output_schema = self._fetch_structured_output_schema()
invoke_result = invoke_llm_with_structured_output(
provider=model_instance.provider,
model_schema=model_schema,
model_instance=model_instance,
prompt_messages=prompt_messages,
json_schema=output_schema,
model_parameters=node_data_model.completion_params,
stop=list(stop or []),
stream=True,
user=self.user_id,
)
else:
invoke_result = model_instance.invoke_llm(
prompt_messages=list(prompt_messages),
model_parameters=node_data_model.completion_params,
@@ -314,8 +332,8 @@ class LLMNode(BaseNode[LLMNodeData]):
return self._handle_invoke_result(invoke_result=invoke_result)
def _handle_invoke_result(
self, invoke_result: LLMResult | Generator[LLMResultChunk, None, None]
) -> Generator[NodeEvent, None, None]:
self, invoke_result: LLMResult | Generator[LLMResultChunk | LLMStructuredOutput, None, None]
) -> Generator[NodeEvent | LLMStructuredOutput, None, None]:
# For blocking mode
if isinstance(invoke_result, LLMResult):
event = self._handle_blocking_result(invoke_result=invoke_result)
@@ -329,11 +347,18 @@ class LLMNode(BaseNode[LLMNodeData]):
usage = LLMUsage.empty_usage()
finish_reason = None
full_text_buffer = io.StringIO()
# Consume the invoke result and handle generator exception
try:
for result in invoke_result:
if isinstance(result, LLMResultChunkWithStructuredOutput):
yield result
if isinstance(result, LLMResultChunk):
contents = result.delta.message.content
for text_part in self._save_multimodal_output_and_convert_result_to_markdown(contents):
full_text_buffer.write(text_part)
yield RunStreamChunkEvent(chunk_content=text_part, from_variable_selector=[self.node_id, "text"])
yield RunStreamChunkEvent(
chunk_content=text_part, from_variable_selector=[self.node_id, "text"]
)
# Update the whole metadata
if not model and result.model:
@@ -346,6 +371,8 @@ class LLMNode(BaseNode[LLMNodeData]):
usage = result.delta.usage
if finish_reason is None and result.delta.finish_reason:
finish_reason = result.delta.finish_reason
except OutputParserError as e:
raise LLMNodeError(f"Failed to parse structured output: {e}")
yield ModelInvokeCompletedEvent(text=full_text_buffer.getvalue(), usage=usage, finish_reason=finish_reason)
@@ -522,12 +549,6 @@ class LLMNode(BaseNode[LLMNodeData]):
if not model_schema:
raise ModelNotExistError(f"Model {node_data_model.name} not exist.")
if self.node_data.structured_output_enabled:
if model_schema.support_structure_output:
completion_params = self._handle_native_json_schema(completion_params, model_schema.parameter_rules)
else:
# Set appropriate response format based on model capabilities
self._set_response_format(completion_params, model_schema.parameter_rules)
model_config_with_cred.parameters = completion_params
# NOTE(-LAN-): This line modify the `self.node_data.model`, which is used in `_invoke_llm()`.
node_data_model.completion_params = completion_params
@@ -719,32 +740,8 @@ class LLMNode(BaseNode[LLMNodeData]):
)
if not model_schema:
raise ModelNotExistError(f"Model {model_config.model} not exist.")
if self.node_data.structured_output_enabled:
if not model_schema.support_structure_output:
filtered_prompt_messages = self._handle_prompt_based_schema(
prompt_messages=filtered_prompt_messages,
)
return filtered_prompt_messages, model_config.stop
def _parse_structured_output(self, result_text: str) -> dict[str, Any]:
structured_output: dict[str, Any] = {}
try:
parsed = json.loads(result_text)
if not isinstance(parsed, dict):
raise LLMNodeError(f"Failed to parse structured output: {result_text}")
structured_output = parsed
except json.JSONDecodeError as e:
# if the result_text is not a valid json, try to repair it
parsed = json_repair.loads(result_text)
if not isinstance(parsed, dict):
# handle reasoning model like deepseek-r1 got '<think>\n\n</think>\n' prefix
if isinstance(parsed, list):
parsed = next((item for item in parsed if isinstance(item, dict)), {})
else:
raise LLMNodeError(f"Failed to parse structured output: {result_text}")
structured_output = parsed
return structured_output
@classmethod
def _extract_variable_selector_to_variable_mapping(
cls,
@@ -934,104 +931,6 @@ class LLMNode(BaseNode[LLMNodeData]):
self._file_outputs.append(saved_file)
return saved_file
def _handle_native_json_schema(self, model_parameters: dict, rules: list[ParameterRule]) -> dict:
"""
Handle structured output for models with native JSON schema support.
:param model_parameters: Model parameters to update
:param rules: Model parameter rules
:return: Updated model parameters with JSON schema configuration
"""
# Process schema according to model requirements
schema = self._fetch_structured_output_schema()
schema_json = self._prepare_schema_for_model(schema)
# Set JSON schema in parameters
model_parameters["json_schema"] = json.dumps(schema_json, ensure_ascii=False)
# Set appropriate response format if required by the model
for rule in rules:
if rule.name == "response_format" and ResponseFormat.JSON_SCHEMA.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON_SCHEMA.value
return model_parameters
def _handle_prompt_based_schema(self, prompt_messages: Sequence[PromptMessage]) -> list[PromptMessage]:
"""
Handle structured output for models without native JSON schema support.
This function modifies the prompt messages to include schema-based output requirements.
Args:
prompt_messages: Original sequence of prompt messages
Returns:
list[PromptMessage]: Updated prompt messages with structured output requirements
"""
# Convert schema to string format
schema_str = json.dumps(self._fetch_structured_output_schema(), ensure_ascii=False)
# Find existing system prompt with schema placeholder
system_prompt = next(
(prompt for prompt in prompt_messages if isinstance(prompt, SystemPromptMessage)),
None,
)
structured_output_prompt = STRUCTURED_OUTPUT_PROMPT.replace("{{schema}}", schema_str)
# Prepare system prompt content
system_prompt_content = (
structured_output_prompt + "\n\n" + system_prompt.content
if system_prompt and isinstance(system_prompt.content, str)
else structured_output_prompt
)
system_prompt = SystemPromptMessage(content=system_prompt_content)
# Extract content from the last user message
filtered_prompts = [prompt for prompt in prompt_messages if not isinstance(prompt, SystemPromptMessage)]
updated_prompt = [system_prompt] + filtered_prompts
return updated_prompt
def _set_response_format(self, model_parameters: dict, rules: list) -> None:
"""
Set the appropriate response format parameter based on model rules.
:param model_parameters: Model parameters to update
:param rules: Model parameter rules
"""
for rule in rules:
if rule.name == "response_format":
if ResponseFormat.JSON.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON.value
elif ResponseFormat.JSON_OBJECT.value in rule.options:
model_parameters["response_format"] = ResponseFormat.JSON_OBJECT.value
def _prepare_schema_for_model(self, schema: dict) -> dict:
"""
Prepare JSON schema based on model requirements.
Different models have different requirements for JSON schema formatting.
This function handles these differences.
:param schema: The original JSON schema
:return: Processed schema compatible with the current model
"""
# Deep copy to avoid modifying the original schema
processed_schema = schema.copy()
# Convert boolean types to string types (common requirement)
convert_boolean_to_string(processed_schema)
# Apply model-specific transformations
if SpecialModelType.GEMINI in self.node_data.model.name:
remove_additional_properties(processed_schema)
return processed_schema
elif SpecialModelType.OLLAMA in self.node_data.model.provider:
return processed_schema
else:
# Default format with name field
return {"schema": processed_schema, "name": "llm_response"}
def _fetch_model_schema(self, provider: str) -> AIModelEntity | None:
"""
Fetch model schema
@@ -1243,49 +1142,3 @@ def _handle_completion_template(
)
prompt_messages.append(prompt_message)
return prompt_messages
def remove_additional_properties(schema: dict) -> None:
"""
Remove additionalProperties fields from JSON schema.
Used for models like Gemini that don't support this property.
:param schema: JSON schema to modify in-place
"""
if not isinstance(schema, dict):
return
# Remove additionalProperties at current level
schema.pop("additionalProperties", None)
# Process nested structures recursively
for value in schema.values():
if isinstance(value, dict):
remove_additional_properties(value)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
remove_additional_properties(item)
def convert_boolean_to_string(schema: dict) -> None:
"""
Convert boolean type specifications to string in JSON schema.
:param schema: JSON schema to modify in-place
"""
if not isinstance(schema, dict):
return
# Check for boolean type at current level
if schema.get("type") == "boolean":
schema["type"] = "string"
# Process nested dictionaries and lists recursively
for value in schema.values():
if isinstance(value, dict):
convert_boolean_to_string(value)
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
convert_boolean_to_string(item)

View File

@@ -1,16 +0,0 @@
from enum import StrEnum
class ResponseFormat(StrEnum):
"""Constants for model response formats"""
JSON_SCHEMA = "json_schema" # model's structured output mode. some model like gemini, gpt-4o, support this mode.
JSON = "JSON" # model's json mode. some model like claude support this mode.
JSON_OBJECT = "json_object" # json mode's another alias. some model like deepseek-chat, qwen use this alias.
class SpecialModelType(StrEnum):
"""Constants for identifying model types"""
GEMINI = "gemini"
OLLAMA = "ollama"

View File

@@ -1,17 +0,0 @@
STRUCTURED_OUTPUT_PROMPT = """Youre a helpful AI assistant. You could answer questions and output in JSON format.
constraints:
- You must output in JSON format.
- Do not output boolean value, use string type instead.
- Do not output integer or float value, use number type instead.
eg:
Here is the JSON schema:
{"additionalProperties": false, "properties": {"age": {"type": "number"}, "name": {"type": "string"}}, "required": ["name", "age"], "type": "object"}
Here is the user's question:
My name is John Doe and I am 30 years old.
output:
{"name": "John Doe", "age": 30}
Here is the JSON schema:
{{schema}}
""" # noqa: E501

View File

@@ -9,6 +9,7 @@ from unittest.mock import MagicMock, patch
import pytest
from core.app.entities.app_invoke_entities import InvokeFrom
from core.llm_generator.output_parser.structured_output import _parse_structured_output
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.message_entities import AssistantPromptMessage
from core.workflow.entities.variable_pool import VariablePool
@@ -277,29 +278,6 @@ def test_execute_llm_with_jinja2(flask_req_ctx, setup_code_executor_mock):
def test_extract_json():
node = init_llm_node(
config={
"id": "llm",
"data": {
"title": "123",
"type": "llm",
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
"prompt_config": {
"structured_output": {
"enabled": True,
"schema": {
"type": "object",
"properties": {"name": {"type": "string"}, "age": {"type": "number"}},
},
}
},
"prompt_template": [{"role": "user", "text": "{{#sys.query#}}"}],
"memory": None,
"context": {"enabled": False},
"vision": {"enabled": False},
},
},
)
llm_texts = [
'<think>\n\n</think>{"name": "test", "age": 123', # resoning model (deepseek-r1)
'{"name":"test","age":123}', # json schema model (gpt-4o)
@@ -308,4 +286,4 @@ def test_extract_json():
'{"name":"test",age:123}', # without quotes (qwen-2.5-0.5b)
]
result = {"name": "test", "age": 123}
assert all(node._parse_structured_output(item) == result for item in llm_texts)
assert all(_parse_structured_output(item) == result for item in llm_texts)