Feat:remove estimation of embedding cost (#7950)
Co-authored-by: jyong <718720800@qq.com>
This commit is contained in:
@@ -16,9 +16,7 @@ from configs import dify_config
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType, PriceType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
@@ -255,11 +253,8 @@ class IndexingRunner:
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
tokens = 0
|
||||
preview_texts = []
|
||||
total_segments = 0
|
||||
total_price = 0
|
||||
currency = 'USD'
|
||||
index_type = doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
all_text_docs = []
|
||||
@@ -286,54 +281,22 @@ class IndexingRunner:
|
||||
for document in documents:
|
||||
if len(preview_texts) < 5:
|
||||
preview_texts.append(document.page_content)
|
||||
if indexing_technique == 'high_quality' or embedding_model_instance:
|
||||
tokens += embedding_model_instance.get_text_embedding_num_tokens(
|
||||
texts=[self.filter_string(document.page_content)]
|
||||
)
|
||||
|
||||
if doc_form and doc_form == 'qa_model':
|
||||
model_instance = self.model_manager.get_default_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.LLM
|
||||
)
|
||||
|
||||
model_type_instance = model_instance.model_type_instance
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
|
||||
doc_language)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
price_info = model_type_instance.get_price(
|
||||
model=model_instance.model,
|
||||
credentials=model_instance.credentials,
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=total_segments * 2000,
|
||||
)
|
||||
|
||||
return {
|
||||
"total_segments": total_segments * 20,
|
||||
"tokens": total_segments * 2000,
|
||||
"total_price": '{:f}'.format(price_info.total_amount),
|
||||
"currency": price_info.currency,
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
}
|
||||
if embedding_model_instance:
|
||||
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
|
||||
embedding_price_info = embedding_model_type_instance.get_price(
|
||||
model=embedding_model_instance.model,
|
||||
credentials=embedding_model_instance.credentials,
|
||||
price_type=PriceType.INPUT,
|
||||
tokens=tokens
|
||||
)
|
||||
total_price = '{:f}'.format(embedding_price_info.total_amount)
|
||||
currency = embedding_price_info.currency
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"tokens": tokens,
|
||||
"total_price": total_price,
|
||||
"currency": currency,
|
||||
"preview": preview_texts
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user