add tidb on qdrant type (#9831)
Co-authored-by: Zhaofeng Miao <522856232@qq.com>
This commit is contained in:
17
api/core/rag/datasource/vdb/tidb_on_qdrant/tidb_entities.py
Normal file
17
api/core/rag/datasource/vdb/tidb_on_qdrant/tidb_entities.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ClusterEntity(BaseModel):
|
||||
"""
|
||||
Model Config Entity.
|
||||
"""
|
||||
|
||||
name: str
|
||||
cluster_id: str
|
||||
displayName: str
|
||||
region: str
|
||||
spendingLimit: Optional[int] = 1000
|
||||
version: str
|
||||
createdBy: str
|
@@ -0,0 +1,526 @@
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from collections.abc import Generator, Iterable, Sequence
|
||||
from itertools import islice
|
||||
from typing import TYPE_CHECKING, Any, Optional, Union, cast
|
||||
|
||||
import qdrant_client
|
||||
import requests
|
||||
from flask import current_app
|
||||
from pydantic import BaseModel
|
||||
from qdrant_client.http import models as rest
|
||||
from qdrant_client.http.models import (
|
||||
FilterSelector,
|
||||
HnswConfigDiff,
|
||||
PayloadSchemaType,
|
||||
TextIndexParams,
|
||||
TextIndexType,
|
||||
TokenizerType,
|
||||
)
|
||||
from qdrant_client.local.qdrant_local import QdrantLocal
|
||||
from requests.auth import HTTPDigestAuth
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_service import TidbService
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, TidbAuthBinding
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from qdrant_client import grpc # noqa
|
||||
from qdrant_client.conversions import common_types
|
||||
from qdrant_client.http import models as rest
|
||||
|
||||
DictFilter = dict[str, Union[str, int, bool, dict, list]]
|
||||
MetadataFilter = Union[DictFilter, common_types.Filter]
|
||||
|
||||
|
||||
class TidbOnQdrantConfig(BaseModel):
|
||||
endpoint: str
|
||||
api_key: Optional[str] = None
|
||||
timeout: float = 20
|
||||
root_path: Optional[str] = None
|
||||
grpc_port: int = 6334
|
||||
prefer_grpc: bool = False
|
||||
|
||||
def to_qdrant_params(self):
|
||||
if self.endpoint and self.endpoint.startswith("path:"):
|
||||
path = self.endpoint.replace("path:", "")
|
||||
if not os.path.isabs(path):
|
||||
path = os.path.join(self.root_path, path)
|
||||
|
||||
return {"path": path}
|
||||
else:
|
||||
return {
|
||||
"url": self.endpoint,
|
||||
"api_key": self.api_key,
|
||||
"timeout": self.timeout,
|
||||
"verify": False,
|
||||
"grpc_port": self.grpc_port,
|
||||
"prefer_grpc": self.prefer_grpc,
|
||||
}
|
||||
|
||||
|
||||
class TidbConfig(BaseModel):
|
||||
api_url: str
|
||||
public_key: str
|
||||
private_key: str
|
||||
|
||||
|
||||
class TidbOnQdrantVector(BaseVector):
|
||||
def __init__(self, collection_name: str, group_id: str, config: TidbOnQdrantConfig, distance_func: str = "Cosine"):
|
||||
super().__init__(collection_name)
|
||||
self._client_config = config
|
||||
self._client = qdrant_client.QdrantClient(**self._client_config.to_qdrant_params())
|
||||
self._distance_func = distance_func.upper()
|
||||
self._group_id = group_id
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.TIDB_ON_QDRANT
|
||||
|
||||
def to_index_struct(self) -> dict:
|
||||
return {"type": self.get_type(), "vector_store": {"class_prefix": self._collection_name}}
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
if texts:
|
||||
# get embedding vector size
|
||||
vector_size = len(embeddings[0])
|
||||
# get collection name
|
||||
collection_name = self._collection_name
|
||||
# create collection
|
||||
self.create_collection(collection_name, vector_size)
|
||||
|
||||
self.add_texts(texts, embeddings, **kwargs)
|
||||
|
||||
def create_collection(self, collection_name: str, vector_size: int):
|
||||
lock_name = "vector_indexing_lock_{}".format(collection_name)
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
collection_name = collection_name or uuid.uuid4().hex
|
||||
all_collection_name = []
|
||||
collections_response = self._client.get_collections()
|
||||
collection_list = collections_response.collections
|
||||
for collection in collection_list:
|
||||
all_collection_name.append(collection.name)
|
||||
if collection_name not in all_collection_name:
|
||||
from qdrant_client.http import models as rest
|
||||
|
||||
vectors_config = rest.VectorParams(
|
||||
size=vector_size,
|
||||
distance=rest.Distance[self._distance_func],
|
||||
)
|
||||
hnsw_config = HnswConfigDiff(
|
||||
m=0,
|
||||
payload_m=16,
|
||||
ef_construct=100,
|
||||
full_scan_threshold=10000,
|
||||
max_indexing_threads=0,
|
||||
on_disk=False,
|
||||
)
|
||||
self._client.recreate_collection(
|
||||
collection_name=collection_name,
|
||||
vectors_config=vectors_config,
|
||||
hnsw_config=hnsw_config,
|
||||
timeout=int(self._client_config.timeout),
|
||||
)
|
||||
|
||||
# create group_id payload index
|
||||
self._client.create_payload_index(
|
||||
collection_name, Field.GROUP_KEY.value, field_schema=PayloadSchemaType.KEYWORD
|
||||
)
|
||||
# create doc_id payload index
|
||||
self._client.create_payload_index(
|
||||
collection_name, Field.DOC_ID.value, field_schema=PayloadSchemaType.KEYWORD
|
||||
)
|
||||
# create full text index
|
||||
text_index_params = TextIndexParams(
|
||||
type=TextIndexType.TEXT,
|
||||
tokenizer=TokenizerType.MULTILINGUAL,
|
||||
min_token_len=2,
|
||||
max_token_len=20,
|
||||
lowercase=True,
|
||||
)
|
||||
self._client.create_payload_index(
|
||||
collection_name, Field.CONTENT_KEY.value, field_schema=text_index_params
|
||||
)
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
uuids = self._get_uuids(documents)
|
||||
texts = [d.page_content for d in documents]
|
||||
metadatas = [d.metadata for d in documents]
|
||||
|
||||
added_ids = []
|
||||
for batch_ids, points in self._generate_rest_batches(texts, embeddings, metadatas, uuids, 64, self._group_id):
|
||||
self._client.upsert(collection_name=self._collection_name, points=points)
|
||||
added_ids.extend(batch_ids)
|
||||
|
||||
return added_ids
|
||||
|
||||
def _generate_rest_batches(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
embeddings: list[list[float]],
|
||||
metadatas: Optional[list[dict]] = None,
|
||||
ids: Optional[Sequence[str]] = None,
|
||||
batch_size: int = 64,
|
||||
group_id: Optional[str] = None,
|
||||
) -> Generator[tuple[list[str], list[rest.PointStruct]], None, None]:
|
||||
from qdrant_client.http import models as rest
|
||||
|
||||
texts_iterator = iter(texts)
|
||||
embeddings_iterator = iter(embeddings)
|
||||
metadatas_iterator = iter(metadatas or [])
|
||||
ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)])
|
||||
while batch_texts := list(islice(texts_iterator, batch_size)):
|
||||
# Take the corresponding metadata and id for each text in a batch
|
||||
batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None
|
||||
batch_ids = list(islice(ids_iterator, batch_size))
|
||||
|
||||
# Generate the embeddings for all the texts in a batch
|
||||
batch_embeddings = list(islice(embeddings_iterator, batch_size))
|
||||
|
||||
points = [
|
||||
rest.PointStruct(
|
||||
id=point_id,
|
||||
vector=vector,
|
||||
payload=payload,
|
||||
)
|
||||
for point_id, vector, payload in zip(
|
||||
batch_ids,
|
||||
batch_embeddings,
|
||||
self._build_payloads(
|
||||
batch_texts,
|
||||
batch_metadatas,
|
||||
Field.CONTENT_KEY.value,
|
||||
Field.METADATA_KEY.value,
|
||||
group_id,
|
||||
Field.GROUP_KEY.value,
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
yield batch_ids, points
|
||||
|
||||
@classmethod
|
||||
def _build_payloads(
|
||||
cls,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[list[dict]],
|
||||
content_payload_key: str,
|
||||
metadata_payload_key: str,
|
||||
group_id: str,
|
||||
group_payload_key: str,
|
||||
) -> list[dict]:
|
||||
payloads = []
|
||||
for i, text in enumerate(texts):
|
||||
if text is None:
|
||||
raise ValueError(
|
||||
"At least one of the texts is None. Please remove it before "
|
||||
"calling .from_texts or .add_texts on Qdrant instance."
|
||||
)
|
||||
metadata = metadatas[i] if metadatas is not None else None
|
||||
payloads.append({content_payload_key: text, metadata_payload_key: metadata, group_payload_key: group_id})
|
||||
|
||||
return payloads
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str):
|
||||
from qdrant_client.http import models
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
|
||||
try:
|
||||
filter = models.Filter(
|
||||
must=[
|
||||
models.FieldCondition(
|
||||
key=f"metadata.{key}",
|
||||
match=models.MatchValue(value=value),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
self._reload_if_needed()
|
||||
|
||||
self._client.delete(
|
||||
collection_name=self._collection_name,
|
||||
points_selector=FilterSelector(filter=filter),
|
||||
)
|
||||
except UnexpectedResponse as e:
|
||||
# Collection does not exist, so return
|
||||
if e.status_code == 404:
|
||||
return
|
||||
# Some other error occurred, so re-raise the exception
|
||||
else:
|
||||
raise e
|
||||
|
||||
def delete(self):
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
|
||||
try:
|
||||
self._client.delete_collection(collection_name=self._collection_name)
|
||||
except UnexpectedResponse as e:
|
||||
# Collection does not exist, so return
|
||||
if e.status_code == 404:
|
||||
return
|
||||
# Some other error occurred, so re-raise the exception
|
||||
else:
|
||||
raise e
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
from qdrant_client.http import models
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
|
||||
for node_id in ids:
|
||||
try:
|
||||
filter = models.Filter(
|
||||
must=[
|
||||
models.FieldCondition(
|
||||
key="metadata.doc_id",
|
||||
match=models.MatchValue(value=node_id),
|
||||
),
|
||||
],
|
||||
)
|
||||
self._client.delete(
|
||||
collection_name=self._collection_name,
|
||||
points_selector=FilterSelector(filter=filter),
|
||||
)
|
||||
except UnexpectedResponse as e:
|
||||
# Collection does not exist, so return
|
||||
if e.status_code == 404:
|
||||
return
|
||||
# Some other error occurred, so re-raise the exception
|
||||
else:
|
||||
raise e
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
all_collection_name = []
|
||||
collections_response = self._client.get_collections()
|
||||
collection_list = collections_response.collections
|
||||
for collection in collection_list:
|
||||
all_collection_name.append(collection.name)
|
||||
if self._collection_name not in all_collection_name:
|
||||
return False
|
||||
response = self._client.retrieve(collection_name=self._collection_name, ids=[id])
|
||||
|
||||
return len(response) > 0
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
from qdrant_client.http import models
|
||||
|
||||
filter = models.Filter(
|
||||
must=[
|
||||
models.FieldCondition(
|
||||
key="group_id",
|
||||
match=models.MatchValue(value=self._group_id),
|
||||
),
|
||||
],
|
||||
)
|
||||
results = self._client.search(
|
||||
collection_name=self._collection_name,
|
||||
query_vector=query_vector,
|
||||
query_filter=filter,
|
||||
limit=kwargs.get("top_k", 4),
|
||||
with_payload=True,
|
||||
with_vectors=True,
|
||||
score_threshold=kwargs.get("score_threshold", 0.0),
|
||||
)
|
||||
docs = []
|
||||
for result in results:
|
||||
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
|
||||
# duplicate check score threshold
|
||||
score_threshold = kwargs.get("score_threshold") or 0.0
|
||||
if result.score > score_threshold:
|
||||
metadata["score"] = result.score
|
||||
doc = Document(
|
||||
page_content=result.payload.get(Field.CONTENT_KEY.value),
|
||||
metadata=metadata,
|
||||
)
|
||||
docs.append(doc)
|
||||
# Sort the documents by score in descending order
|
||||
docs = sorted(docs, key=lambda x: x.metadata["score"], reverse=True)
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
"""Return docs most similar by bm25.
|
||||
Returns:
|
||||
List of documents most similar to the query text and distance for each.
|
||||
"""
|
||||
from qdrant_client.http import models
|
||||
|
||||
scroll_filter = models.Filter(
|
||||
must=[
|
||||
models.FieldCondition(
|
||||
key="page_content",
|
||||
match=models.MatchText(text=query),
|
||||
)
|
||||
]
|
||||
)
|
||||
response = self._client.scroll(
|
||||
collection_name=self._collection_name,
|
||||
scroll_filter=scroll_filter,
|
||||
limit=kwargs.get("top_k", 2),
|
||||
with_payload=True,
|
||||
with_vectors=True,
|
||||
)
|
||||
results = response[0]
|
||||
documents = []
|
||||
for result in results:
|
||||
if result:
|
||||
document = self._document_from_scored_point(result, Field.CONTENT_KEY.value, Field.METADATA_KEY.value)
|
||||
document.metadata["vector"] = result.vector
|
||||
documents.append(document)
|
||||
|
||||
return documents
|
||||
|
||||
def _reload_if_needed(self):
|
||||
if isinstance(self._client, QdrantLocal):
|
||||
self._client = cast(QdrantLocal, self._client)
|
||||
self._client._load()
|
||||
|
||||
@classmethod
|
||||
def _document_from_scored_point(
|
||||
cls,
|
||||
scored_point: Any,
|
||||
content_payload_key: str,
|
||||
metadata_payload_key: str,
|
||||
) -> Document:
|
||||
return Document(
|
||||
page_content=scored_point.payload.get(content_payload_key),
|
||||
metadata=scored_point.payload.get(metadata_payload_key) or {},
|
||||
)
|
||||
|
||||
|
||||
class TidbOnQdrantVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TidbOnQdrantVector:
|
||||
tidb_auth_binding = (
|
||||
db.session.query(TidbAuthBinding).filter(TidbAuthBinding.tenant_id == dataset.tenant_id).one_or_none()
|
||||
)
|
||||
if not tidb_auth_binding:
|
||||
idle_tidb_auth_binding = (
|
||||
db.session.query(TidbAuthBinding)
|
||||
.filter(TidbAuthBinding.active == False, TidbAuthBinding.status == "ACTIVE")
|
||||
.limit(1)
|
||||
.one_or_none()
|
||||
)
|
||||
if idle_tidb_auth_binding:
|
||||
idle_tidb_auth_binding.active = True
|
||||
idle_tidb_auth_binding.tenant_id = dataset.tenant_id
|
||||
db.session.commit()
|
||||
TIDB_ON_QDRANT_API_KEY = f"{idle_tidb_auth_binding.account}:{idle_tidb_auth_binding.password}"
|
||||
else:
|
||||
with redis_client.lock("create_tidb_serverless_cluster_lock", timeout=900):
|
||||
tidb_auth_binding = (
|
||||
db.session.query(TidbAuthBinding)
|
||||
.filter(TidbAuthBinding.tenant_id == dataset.tenant_id)
|
||||
.one_or_none()
|
||||
)
|
||||
if tidb_auth_binding:
|
||||
TIDB_ON_QDRANT_API_KEY = f"{tidb_auth_binding.account}:{tidb_auth_binding.password}"
|
||||
|
||||
else:
|
||||
new_cluster = TidbService.create_tidb_serverless_cluster(
|
||||
dify_config.TIDB_PROJECT_ID,
|
||||
dify_config.TIDB_API_URL,
|
||||
dify_config.TIDB_IAM_API_URL,
|
||||
dify_config.TIDB_PUBLIC_KEY,
|
||||
dify_config.TIDB_PRIVATE_KEY,
|
||||
dify_config.TIDB_REGION,
|
||||
)
|
||||
new_tidb_auth_binding = TidbAuthBinding(
|
||||
cluster_id=new_cluster["cluster_id"],
|
||||
cluster_name=new_cluster["cluster_name"],
|
||||
account=new_cluster["account"],
|
||||
password=new_cluster["password"],
|
||||
tenant_id=dataset.tenant_id,
|
||||
active=True,
|
||||
status="ACTIVE",
|
||||
)
|
||||
db.session.add(new_tidb_auth_binding)
|
||||
db.session.commit()
|
||||
TIDB_ON_QDRANT_API_KEY = f"{new_tidb_auth_binding.account}:{new_tidb_auth_binding.password}"
|
||||
|
||||
else:
|
||||
TIDB_ON_QDRANT_API_KEY = f"{tidb_auth_binding.account}:{tidb_auth_binding.password}"
|
||||
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
|
||||
collection_name = class_prefix
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.TIDB_ON_QDRANT, collection_name))
|
||||
|
||||
config = current_app.config
|
||||
|
||||
return TidbOnQdrantVector(
|
||||
collection_name=collection_name,
|
||||
group_id=dataset.id,
|
||||
config=TidbOnQdrantConfig(
|
||||
endpoint=dify_config.TIDB_ON_QDRANT_URL,
|
||||
api_key=TIDB_ON_QDRANT_API_KEY,
|
||||
root_path=config.root_path,
|
||||
timeout=dify_config.TIDB_ON_QDRANT_CLIENT_TIMEOUT,
|
||||
grpc_port=dify_config.TIDB_ON_QDRANT_GRPC_PORT,
|
||||
prefer_grpc=dify_config.TIDB_ON_QDRANT_GRPC_ENABLED,
|
||||
),
|
||||
)
|
||||
|
||||
def create_tidb_serverless_cluster(self, tidb_config: TidbConfig, display_name: str, region: str):
|
||||
"""
|
||||
Creates a new TiDB Serverless cluster.
|
||||
:param tidb_config: The configuration for the TiDB Cloud API.
|
||||
:param display_name: The user-friendly display name of the cluster (required).
|
||||
:param region: The region where the cluster will be created (required).
|
||||
|
||||
:return: The response from the API.
|
||||
"""
|
||||
region_object = {
|
||||
"name": region,
|
||||
}
|
||||
|
||||
labels = {
|
||||
"tidb.cloud/project": "1372813089454548012",
|
||||
}
|
||||
cluster_data = {"displayName": display_name, "region": region_object, "labels": labels}
|
||||
|
||||
response = requests.post(
|
||||
f"{tidb_config.api_url}/clusters",
|
||||
json=cluster_data,
|
||||
auth=HTTPDigestAuth(tidb_config.public_key, tidb_config.private_key),
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
else:
|
||||
response.raise_for_status()
|
||||
|
||||
def change_tidb_serverless_root_password(self, tidb_config: TidbConfig, cluster_id: str, new_password: str):
|
||||
"""
|
||||
Changes the root password of a specific TiDB Serverless cluster.
|
||||
|
||||
:param tidb_config: The configuration for the TiDB Cloud API.
|
||||
:param cluster_id: The ID of the cluster for which the password is to be changed (required).
|
||||
:param new_password: The new password for the root user (required).
|
||||
:return: The response from the API.
|
||||
"""
|
||||
|
||||
body = {"password": new_password}
|
||||
|
||||
response = requests.put(
|
||||
f"{tidb_config.api_url}/clusters/{cluster_id}/password",
|
||||
json=body,
|
||||
auth=HTTPDigestAuth(tidb_config.public_key, tidb_config.private_key),
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
else:
|
||||
response.raise_for_status()
|
250
api/core/rag/datasource/vdb/tidb_on_qdrant/tidb_service.py
Normal file
250
api/core/rag/datasource/vdb/tidb_on_qdrant/tidb_service.py
Normal file
@@ -0,0 +1,250 @@
|
||||
import time
|
||||
import uuid
|
||||
|
||||
import requests
|
||||
from requests.auth import HTTPDigestAuth
|
||||
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import TidbAuthBinding
|
||||
|
||||
|
||||
class TidbService:
|
||||
@staticmethod
|
||||
def create_tidb_serverless_cluster(
|
||||
project_id: str, api_url: str, iam_url: str, public_key: str, private_key: str, region: str
|
||||
):
|
||||
"""
|
||||
Creates a new TiDB Serverless cluster.
|
||||
:param project_id: The project ID of the TiDB Cloud project (required).
|
||||
:param api_url: The URL of the TiDB Cloud API (required).
|
||||
:param iam_url: The URL of the TiDB Cloud IAM API (required).
|
||||
:param public_key: The public key for the API (required).
|
||||
:param private_key: The private key for the API (required).
|
||||
:param display_name: The user-friendly display name of the cluster (required).
|
||||
:param region: The region where the cluster will be created (required).
|
||||
|
||||
:return: The response from the API.
|
||||
"""
|
||||
|
||||
region_object = {
|
||||
"name": region,
|
||||
}
|
||||
|
||||
labels = {
|
||||
"tidb.cloud/project": project_id,
|
||||
}
|
||||
|
||||
spending_limit = {
|
||||
"monthly": 100,
|
||||
}
|
||||
password = str(uuid.uuid4()).replace("-", "")[:16]
|
||||
display_name = str(uuid.uuid4()).replace("-", "")[:16]
|
||||
cluster_data = {
|
||||
"displayName": display_name,
|
||||
"region": region_object,
|
||||
"labels": labels,
|
||||
"spendingLimit": spending_limit,
|
||||
"rootPassword": password,
|
||||
}
|
||||
|
||||
response = requests.post(f"{api_url}/clusters", json=cluster_data, auth=HTTPDigestAuth(public_key, private_key))
|
||||
|
||||
if response.status_code == 200:
|
||||
response_data = response.json()
|
||||
cluster_id = response_data["clusterId"]
|
||||
retry_count = 0
|
||||
max_retries = 30
|
||||
while retry_count < max_retries:
|
||||
cluster_response = TidbService.get_tidb_serverless_cluster(api_url, public_key, private_key, cluster_id)
|
||||
if cluster_response["state"] == "ACTIVE":
|
||||
user_prefix = cluster_response["userPrefix"]
|
||||
return {
|
||||
"cluster_id": cluster_id,
|
||||
"cluster_name": display_name,
|
||||
"account": f"{user_prefix}.root",
|
||||
"password": password,
|
||||
}
|
||||
time.sleep(30) # wait 30 seconds before retrying
|
||||
retry_count += 1
|
||||
else:
|
||||
response.raise_for_status()
|
||||
|
||||
@staticmethod
|
||||
def delete_tidb_serverless_cluster(api_url: str, public_key: str, private_key: str, cluster_id: str):
|
||||
"""
|
||||
Deletes a specific TiDB Serverless cluster.
|
||||
|
||||
:param api_url: The URL of the TiDB Cloud API (required).
|
||||
:param public_key: The public key for the API (required).
|
||||
:param private_key: The private key for the API (required).
|
||||
:param cluster_id: The ID of the cluster to be deleted (required).
|
||||
:return: The response from the API.
|
||||
"""
|
||||
|
||||
response = requests.delete(f"{api_url}/clusters/{cluster_id}", auth=HTTPDigestAuth(public_key, private_key))
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
else:
|
||||
response.raise_for_status()
|
||||
|
||||
@staticmethod
|
||||
def get_tidb_serverless_cluster(api_url: str, public_key: str, private_key: str, cluster_id: str):
|
||||
"""
|
||||
Deletes a specific TiDB Serverless cluster.
|
||||
|
||||
:param api_url: The URL of the TiDB Cloud API (required).
|
||||
:param public_key: The public key for the API (required).
|
||||
:param private_key: The private key for the API (required).
|
||||
:param cluster_id: The ID of the cluster to be deleted (required).
|
||||
:return: The response from the API.
|
||||
"""
|
||||
|
||||
response = requests.get(f"{api_url}/clusters/{cluster_id}", auth=HTTPDigestAuth(public_key, private_key))
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
else:
|
||||
response.raise_for_status()
|
||||
|
||||
@staticmethod
|
||||
def change_tidb_serverless_root_password(
|
||||
api_url: str, public_key: str, private_key: str, cluster_id: str, account: str, new_password: str
|
||||
):
|
||||
"""
|
||||
Changes the root password of a specific TiDB Serverless cluster.
|
||||
|
||||
:param api_url: The URL of the TiDB Cloud API (required).
|
||||
:param public_key: The public key for the API (required).
|
||||
:param private_key: The private key for the API (required).
|
||||
:param cluster_id: The ID of the cluster for which the password is to be changed (required).+
|
||||
:param account: The account for which the password is to be changed (required).
|
||||
:param new_password: The new password for the root user (required).
|
||||
:return: The response from the API.
|
||||
"""
|
||||
|
||||
body = {"password": new_password, "builtinRole": "role_admin", "customRoles": []}
|
||||
|
||||
response = requests.patch(
|
||||
f"{api_url}/clusters/{cluster_id}/sqlUsers/{account}",
|
||||
json=body,
|
||||
auth=HTTPDigestAuth(public_key, private_key),
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
return response.json()
|
||||
else:
|
||||
response.raise_for_status()
|
||||
|
||||
@staticmethod
|
||||
def batch_update_tidb_serverless_cluster_status(
|
||||
tidb_serverless_list: list[TidbAuthBinding],
|
||||
project_id: str,
|
||||
api_url: str,
|
||||
iam_url: str,
|
||||
public_key: str,
|
||||
private_key: str,
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Update the status of a new TiDB Serverless cluster.
|
||||
:param project_id: The project ID of the TiDB Cloud project (required).
|
||||
:param api_url: The URL of the TiDB Cloud API (required).
|
||||
:param iam_url: The URL of the TiDB Cloud IAM API (required).
|
||||
:param public_key: The public key for the API (required).
|
||||
:param private_key: The private key for the API (required).
|
||||
:param display_name: The user-friendly display name of the cluster (required).
|
||||
:param region: The region where the cluster will be created (required).
|
||||
|
||||
:return: The response from the API.
|
||||
"""
|
||||
clusters = []
|
||||
tidb_serverless_list_map = {item.cluster_id: item for item in tidb_serverless_list}
|
||||
cluster_ids = [item.cluster_id for item in tidb_serverless_list]
|
||||
params = {"clusterIds": cluster_ids, "view": "FULL"}
|
||||
response = requests.get(
|
||||
f"{api_url}/clusters:batchGet", params=params, auth=HTTPDigestAuth(public_key, private_key)
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
response_data = response.json()
|
||||
cluster_infos = []
|
||||
for item in response_data["clusters"]:
|
||||
state = item["state"]
|
||||
userPrefix = item["userPrefix"]
|
||||
if state == "ACTIVE" and len(userPrefix) > 0:
|
||||
cluster_info = tidb_serverless_list_map[item["clusterId"]]
|
||||
cluster_info.status = "ACTIVE"
|
||||
cluster_info.account = f"{userPrefix}.root"
|
||||
db.session.add(cluster_info)
|
||||
db.session.commit()
|
||||
else:
|
||||
response.raise_for_status()
|
||||
|
||||
@staticmethod
|
||||
def batch_create_tidb_serverless_cluster(
|
||||
batch_size: int, project_id: str, api_url: str, iam_url: str, public_key: str, private_key: str, region: str
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Creates a new TiDB Serverless cluster.
|
||||
:param project_id: The project ID of the TiDB Cloud project (required).
|
||||
:param api_url: The URL of the TiDB Cloud API (required).
|
||||
:param iam_url: The URL of the TiDB Cloud IAM API (required).
|
||||
:param public_key: The public key for the API (required).
|
||||
:param private_key: The private key for the API (required).
|
||||
:param display_name: The user-friendly display name of the cluster (required).
|
||||
:param region: The region where the cluster will be created (required).
|
||||
|
||||
:return: The response from the API.
|
||||
"""
|
||||
clusters = []
|
||||
for _ in range(batch_size):
|
||||
region_object = {
|
||||
"name": region,
|
||||
}
|
||||
|
||||
labels = {
|
||||
"tidb.cloud/project": project_id,
|
||||
}
|
||||
|
||||
spending_limit = {
|
||||
"monthly": 10,
|
||||
}
|
||||
password = str(uuid.uuid4()).replace("-", "")[:16]
|
||||
display_name = str(uuid.uuid4()).replace("-", "")
|
||||
cluster_data = {
|
||||
"cluster": {
|
||||
"displayName": display_name,
|
||||
"region": region_object,
|
||||
"labels": labels,
|
||||
"spendingLimit": spending_limit,
|
||||
"rootPassword": password,
|
||||
}
|
||||
}
|
||||
cache_key = f"tidb_serverless_cluster_password:{display_name}"
|
||||
redis_client.setex(cache_key, 3600, password)
|
||||
clusters.append(cluster_data)
|
||||
|
||||
request_body = {"requests": clusters}
|
||||
response = requests.post(
|
||||
f"{api_url}/clusters:batchCreate", json=request_body, auth=HTTPDigestAuth(public_key, private_key)
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
response_data = response.json()
|
||||
cluster_infos = []
|
||||
for item in response_data["clusters"]:
|
||||
cache_key = f"tidb_serverless_cluster_password:{item['displayName']}"
|
||||
password = redis_client.get(cache_key)
|
||||
if not password:
|
||||
continue
|
||||
cluster_info = {
|
||||
"cluster_id": item["clusterId"],
|
||||
"cluster_name": item["displayName"],
|
||||
"account": "root",
|
||||
"password": password.decode("utf-8"),
|
||||
}
|
||||
cluster_infos.append(cluster_info)
|
||||
return cluster_infos
|
||||
else:
|
||||
response.raise_for_status()
|
@@ -9,8 +9,9 @@ from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.cached_embedding import CacheEmbedding
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Dataset, Whitelist
|
||||
|
||||
|
||||
class AbstractVectorFactory(ABC):
|
||||
@@ -35,8 +36,18 @@ class Vector:
|
||||
|
||||
def _init_vector(self) -> BaseVector:
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
|
||||
if self._dataset.index_struct_dict:
|
||||
vector_type = self._dataset.index_struct_dict["type"]
|
||||
else:
|
||||
if dify_config.VECTOR_STORE_WHITELIST_ENABLE:
|
||||
whitelist = (
|
||||
db.session.query(Whitelist)
|
||||
.filter(Whitelist.tenant_id == self._dataset.tenant_id, Whitelist.category == "vector_db")
|
||||
.one_or_none()
|
||||
)
|
||||
if whitelist:
|
||||
vector_type = VectorType.TIDB_ON_QDRANT
|
||||
|
||||
if not vector_type:
|
||||
raise ValueError("Vector store must be specified.")
|
||||
@@ -115,6 +126,10 @@ class Vector:
|
||||
from core.rag.datasource.vdb.upstash.upstash_vector import UpstashVectorFactory
|
||||
|
||||
return UpstashVectorFactory
|
||||
case VectorType.TIDB_ON_QDRANT:
|
||||
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_on_qdrant_vector import TidbOnQdrantVectorFactory
|
||||
|
||||
return TidbOnQdrantVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
@@ -19,3 +19,4 @@ class VectorType(str, Enum):
|
||||
BAIDU = "baidu"
|
||||
VIKINGDB = "vikingdb"
|
||||
UPSTASH = "upstash"
|
||||
TIDB_ON_QDRANT = "tidb_on_qdrant"
|
||||
|
Reference in New Issue
Block a user