chore: format get_customizable_model_schema return value (#9335)

This commit is contained in:
ice yao
2024-10-21 19:05:44 +08:00
committed by GitHub
parent 79fe175440
commit 1e829ceaf3
28 changed files with 33 additions and 30 deletions

View File

@@ -218,7 +218,7 @@ For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` param
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""

View File

@@ -205,7 +205,7 @@ provider_credential_schema:
但是有的供应商根据不同的模型支持不同的参数,如供应商`OpenLLM`支持`top_k`,但是并不是这个供应商提供的所有模型都支持`top_k`我们这里举例A模型支持`top_k`B模型不支持`top_k`那么我们需要在这里动态生成模型参数的Schema如下所示
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
def get_customizable_model_schema(self, model: str, credentials: dict) -> Optional[AIModelEntity]:
"""
used to define customizable model schema
"""