refactor: elegant event dispatch patterns (92% complexity reduction) (#22600)

Signed-off-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
-LAN-
2025-07-18 10:34:47 +08:00
committed by GitHub
parent ffee6f3288
commit 1f9cd99bc2
2 changed files with 1067 additions and 676 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,8 @@
import logging
import time
from collections.abc import Generator
from typing import Optional, Union
from collections.abc import Callable, Generator
from contextlib import contextmanager
from typing import Any, Optional, Union
from sqlalchemy.orm import Session
@@ -13,6 +14,7 @@ from core.app.entities.app_invoke_entities import (
WorkflowAppGenerateEntity,
)
from core.app.entities.queue_entities import (
MessageQueueMessage,
QueueAgentLogEvent,
QueueErrorEvent,
QueueIterationCompletedEvent,
@@ -38,11 +40,13 @@ from core.app.entities.queue_entities import (
QueueWorkflowPartialSuccessEvent,
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
from core.app.entities.task_entities import (
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
PingStreamResponse,
StreamResponse,
TextChunkStreamResponse,
WorkflowAppBlockingResponse,
@@ -54,6 +58,7 @@ from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTas
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.entities.workflow_execution import WorkflowExecution, WorkflowExecutionStatus, WorkflowType
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
@@ -246,315 +251,492 @@ class WorkflowAppGenerateTaskPipeline:
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
@contextmanager
def _database_session(self):
"""Context manager for database sessions."""
with Session(db.engine, expire_on_commit=False) as session:
try:
yield session
session.commit()
except Exception:
session.rollback()
raise
def _ensure_workflow_initialized(self) -> None:
"""Fluent validation for workflow state."""
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _ensure_graph_runtime_initialized(self, graph_runtime_state: Optional[GraphRuntimeState]) -> GraphRuntimeState:
"""Fluent validation for graph runtime state."""
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
return graph_runtime_state
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
"""Handle ping events."""
yield self._base_task_pipeline._ping_stream_response()
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
"""Handle error events."""
err = self._base_task_pipeline._handle_error(event=event)
yield self._base_task_pipeline._error_to_stream_response(err)
def _handle_workflow_started_event(
self, event: QueueWorkflowStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle workflow started events."""
# init workflow run
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_start()
self._workflow_run_id = workflow_execution.id_
start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
yield start_resp
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle node retry events."""
self._ensure_workflow_initialized()
with self._database_session() as session:
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_retried(
workflow_execution_id=self._workflow_run_id,
event=event,
)
response = self._workflow_response_converter.workflow_node_retry_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if response:
yield response
def _handle_node_started_event(
self, event: QueueNodeStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node started events."""
self._ensure_workflow_initialized()
workflow_node_execution = self._workflow_cycle_manager.handle_node_execution_start(
workflow_execution_id=self._workflow_run_id, event=event
)
node_start_response = self._workflow_response_converter.workflow_node_start_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if node_start_response:
yield node_start_response
def _handle_node_succeeded_event(
self, event: QueueNodeSucceededEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node succeeded events."""
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_success(event=event)
node_success_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
self._save_output_for_event(event, workflow_node_execution.id)
if node_success_response:
yield node_success_response
def _handle_node_failed_events(
self,
event: Union[
QueueNodeFailedEvent, QueueNodeInIterationFailedEvent, QueueNodeInLoopFailedEvent, QueueNodeExceptionEvent
],
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle various node failure events."""
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_failed(
event=event,
)
node_failed_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if isinstance(event, QueueNodeExceptionEvent):
self._save_output_for_event(event, workflow_node_execution.id)
if node_failed_response:
yield node_failed_response
def _handle_parallel_branch_started_event(
self, event: QueueParallelBranchRunStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle parallel branch started events."""
self._ensure_workflow_initialized()
parallel_start_resp = self._workflow_response_converter.workflow_parallel_branch_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield parallel_start_resp
def _handle_parallel_branch_finished_events(
self, event: Union[QueueParallelBranchRunSucceededEvent, QueueParallelBranchRunFailedEvent], **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle parallel branch finished events."""
self._ensure_workflow_initialized()
parallel_finish_resp = self._workflow_response_converter.workflow_parallel_branch_finished_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield parallel_finish_resp
def _handle_iteration_start_event(
self, event: QueueIterationStartEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration start events."""
self._ensure_workflow_initialized()
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_start_resp
def _handle_iteration_next_event(
self, event: QueueIterationNextEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration next events."""
self._ensure_workflow_initialized()
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_next_resp
def _handle_iteration_completed_event(
self, event: QueueIterationCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration completed events."""
self._ensure_workflow_initialized()
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_finish_resp
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop start events."""
self._ensure_workflow_initialized()
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_start_resp
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop next events."""
self._ensure_workflow_initialized()
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_next_resp
def _handle_loop_completed_event(
self, event: QueueLoopCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle loop completed events."""
self._ensure_workflow_initialized()
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_finish_resp
def _handle_workflow_succeeded_event(
self,
event: QueueWorkflowSucceededEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow succeeded events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_success(
workflow_run_id=self._workflow_run_id,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
outputs=event.outputs,
conversation_id=None,
trace_manager=trace_manager,
)
# save workflow app log
self._save_workflow_app_log(session=session, workflow_execution=workflow_execution)
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
yield workflow_finish_resp
def _handle_workflow_partial_success_event(
self,
event: QueueWorkflowPartialSuccessEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow partial success events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_partial_success(
workflow_run_id=self._workflow_run_id,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
outputs=event.outputs,
exceptions_count=event.exceptions_count,
conversation_id=None,
trace_manager=trace_manager,
)
# save workflow app log
self._save_workflow_app_log(session=session, workflow_execution=workflow_execution)
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
yield workflow_finish_resp
def _handle_workflow_failed_and_stop_events(
self,
event: Union[QueueWorkflowFailedEvent, QueueStopEvent],
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow failed and stop events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_failed(
workflow_run_id=self._workflow_run_id,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
status=WorkflowExecutionStatus.FAILED
if isinstance(event, QueueWorkflowFailedEvent)
else WorkflowExecutionStatus.STOPPED,
error_message=event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
conversation_id=None,
trace_manager=trace_manager,
exceptions_count=event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
)
# save workflow app log
self._save_workflow_app_log(session=session, workflow_execution=workflow_execution)
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
yield workflow_finish_resp
def _handle_text_chunk_event(
self,
event: QueueTextChunkEvent,
*,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
queue_message: Optional[Union[WorkflowQueueMessage, MessageQueueMessage]] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
return
# only publish tts message at text chunk streaming
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
yield self._workflow_response_converter.handle_agent_log(
task_id=self._application_generate_entity.task_id, event=event
)
def _get_event_handlers(self) -> dict[type, Callable]:
"""Get mapping of event types to their handlers using fluent pattern."""
return {
# Basic events
QueuePingEvent: self._handle_ping_event,
QueueErrorEvent: self._handle_error_event,
QueueTextChunkEvent: self._handle_text_chunk_event,
# Workflow events
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
# Node events
QueueNodeRetryEvent: self._handle_node_retry_event,
QueueNodeStartedEvent: self._handle_node_started_event,
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
# Parallel branch events
QueueParallelBranchRunStartedEvent: self._handle_parallel_branch_started_event,
# Iteration events
QueueIterationStartEvent: self._handle_iteration_start_event,
QueueIterationNextEvent: self._handle_iteration_next_event,
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
# Loop events
QueueLoopStartEvent: self._handle_loop_start_event,
QueueLoopNextEvent: self._handle_loop_next_event,
QueueLoopCompletedEvent: self._handle_loop_completed_event,
# Agent events
QueueAgentLogEvent: self._handle_agent_log_event,
}
def _dispatch_event(
self,
event: Any,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
queue_message: Optional[Union[WorkflowQueueMessage, MessageQueueMessage]] = None,
) -> Generator[StreamResponse, None, None]:
"""Dispatch events using elegant pattern matching."""
handlers = self._get_event_handlers()
event_type = type(event)
# Direct handler lookup
if handler := handlers.get(event_type):
yield from handler(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle node failure events with isinstance check
if isinstance(
event,
(
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeExceptionEvent,
),
):
yield from self._handle_node_failed_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle parallel branch finished events with isinstance check
if isinstance(event, (QueueParallelBranchRunSucceededEvent, QueueParallelBranchRunFailedEvent)):
yield from self._handle_parallel_branch_finished_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle workflow failed and stop events with isinstance check
if isinstance(event, (QueueWorkflowFailedEvent, QueueStopEvent)):
yield from self._handle_workflow_failed_and_stop_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# For unhandled events, we continue (original behavior)
return
def _process_stream_response(
self,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response.
:return:
Process stream response using elegant Fluent Python patterns.
Maintains exact same functionality as original 44-if-statement version.
"""
# Initialize graph runtime state
graph_runtime_state = None
for queue_message in self._base_task_pipeline._queue_manager.listen():
event = queue_message.event
if isinstance(event, QueuePingEvent):
yield self._base_task_pipeline._ping_stream_response()
elif isinstance(event, QueueErrorEvent):
err = self._base_task_pipeline._handle_error(event=event)
yield self._base_task_pipeline._error_to_stream_response(err)
break
elif isinstance(event, QueueWorkflowStartedEvent):
# override graph runtime state
graph_runtime_state = event.graph_runtime_state
match event:
case QueueWorkflowStartedEvent():
graph_runtime_state = event.graph_runtime_state
yield from self._handle_workflow_started_event(event)
# init workflow run
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_start()
self._workflow_run_id = workflow_execution.id_
start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
yield start_resp
elif isinstance(
event,
QueueNodeRetryEvent,
):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_retried(
workflow_execution_id=self._workflow_run_id,
event=event,
)
response = self._workflow_response_converter.workflow_node_retry_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
session.commit()
if response:
yield response
elif isinstance(event, QueueNodeStartedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
workflow_node_execution = self._workflow_cycle_manager.handle_node_execution_start(
workflow_execution_id=self._workflow_run_id, event=event
)
node_start_response = self._workflow_response_converter.workflow_node_start_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if node_start_response:
yield node_start_response
elif isinstance(event, QueueNodeSucceededEvent):
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_success(
event=event
)
node_success_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
self._save_output_for_event(event, workflow_node_execution.id)
if node_success_response:
yield node_success_response
elif isinstance(
event,
QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
):
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_failed(
event=event,
)
node_failed_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if isinstance(event, QueueNodeExceptionEvent):
self._save_output_for_event(event, workflow_node_execution.id)
if node_failed_response:
yield node_failed_response
elif isinstance(event, QueueParallelBranchRunStartedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
parallel_start_resp = (
self._workflow_response_converter.workflow_parallel_branch_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
)
yield parallel_start_resp
elif isinstance(event, QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
parallel_finish_resp = (
self._workflow_response_converter.workflow_parallel_branch_finished_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
)
yield parallel_finish_resp
elif isinstance(event, QueueIterationStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_start_resp
elif isinstance(event, QueueIterationNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_next_resp
elif isinstance(event, QueueIterationCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_finish_resp
elif isinstance(event, QueueLoopStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_start_resp
elif isinstance(event, QueueLoopNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_next_resp
elif isinstance(event, QueueLoopCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_finish_resp
elif isinstance(event, QueueWorkflowSucceededEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_success(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
outputs=event.outputs,
conversation_id=None,
trace_manager=trace_manager,
case QueueTextChunkEvent():
yield from self._handle_text_chunk_event(
event, tts_publisher=tts_publisher, queue_message=queue_message
)
# save workflow app log
self._save_workflow_app_log(session=session, workflow_execution=workflow_execution)
case QueueErrorEvent():
yield from self._handle_error_event(event)
break
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_finish_resp
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_partial_success(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
outputs=event.outputs,
exceptions_count=event.exceptions_count,
conversation_id=None,
trace_manager=trace_manager,
)
# save workflow app log
self._save_workflow_app_log(session=session, workflow_execution=workflow_execution)
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_finish_resp
elif isinstance(event, QueueWorkflowFailedEvent | QueueStopEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_failed(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
status=WorkflowExecutionStatus.FAILED
if isinstance(event, QueueWorkflowFailedEvent)
else WorkflowExecutionStatus.STOPPED,
error_message=event.error
if isinstance(event, QueueWorkflowFailedEvent)
else event.get_stop_reason(),
conversation_id=None,
trace_manager=trace_manager,
exceptions_count=event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
)
# save workflow app log
self._save_workflow_app_log(session=session, workflow_execution=workflow_execution)
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_finish_resp
elif isinstance(event, QueueTextChunkEvent):
delta_text = event.text
if delta_text is None:
continue
# only publish tts message at text chunk streaming
if tts_publisher:
tts_publisher.publish(queue_message)
yield self._text_chunk_to_stream_response(
delta_text, from_variable_selector=event.from_variable_selector
)
elif isinstance(event, QueueAgentLogEvent):
yield self._workflow_response_converter.handle_agent_log(
task_id=self._application_generate_entity.task_id, event=event
)
else:
continue
# Handle all other events through elegant dispatch
case _:
if responses := list(
self._dispatch_event(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
):
yield from responses
if tts_publisher:
tts_publisher.publish(None)