refactor: elegant event dispatch patterns (92% complexity reduction) (#22600)

Signed-off-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
-LAN-
2025-07-18 10:34:47 +08:00
committed by GitHub
parent ffee6f3288
commit 1f9cd99bc2
2 changed files with 1067 additions and 676 deletions

View File

@@ -1,6 +1,7 @@
import logging
import time
from collections.abc import Generator, Mapping
from collections.abc import Callable, Generator, Mapping
from contextlib import contextmanager
from threading import Thread
from typing import Any, Optional, Union
@@ -15,6 +16,7 @@ from core.app.entities.app_invoke_entities import (
InvokeFrom,
)
from core.app.entities.queue_entities import (
MessageQueueMessage,
QueueAdvancedChatMessageEndEvent,
QueueAgentLogEvent,
QueueAnnotationReplyEvent,
@@ -44,6 +46,7 @@ from core.app.entities.queue_entities import (
QueueWorkflowPartialSuccessEvent,
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
from core.app.entities.task_entities import (
ChatbotAppBlockingResponse,
@@ -52,6 +55,7 @@ from core.app.entities.task_entities import (
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
MessageEndStreamResponse,
PingStreamResponse,
StreamResponse,
WorkflowTaskState,
)
@@ -162,7 +166,6 @@ class AdvancedChatAppGenerateTaskPipeline:
Process generate task pipeline.
:return:
"""
# start generate conversation name thread
self._conversation_name_generate_thread = self._message_cycle_manager.generate_conversation_name(
conversation_id=self._conversation_id, query=self._application_generate_entity.query
)
@@ -254,15 +257,12 @@ class AdvancedChatAppGenerateTaskPipeline:
yield response
start_listener_time = time.time()
# timeout
while (time.time() - start_listener_time) < TTS_AUTO_PLAY_TIMEOUT:
try:
if not tts_publisher:
break
audio_trunk = tts_publisher.check_and_get_audio()
if audio_trunk is None:
# release cpu
# sleep 20 ms ( 40ms => 1280 byte audio file,20ms => 640 byte audio file)
time.sleep(TTS_AUTO_PLAY_YIELD_CPU_TIME)
continue
if audio_trunk.status == "finish":
@@ -276,58 +276,66 @@ class AdvancedChatAppGenerateTaskPipeline:
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response.
:return:
"""
# init fake graph runtime state
graph_runtime_state: Optional[GraphRuntimeState] = None
for queue_message in self._base_task_pipeline._queue_manager.listen():
event = queue_message.event
if isinstance(event, QueuePingEvent):
yield self._base_task_pipeline._ping_stream_response()
elif isinstance(event, QueueErrorEvent):
@contextmanager
def _database_session(self):
"""Context manager for database sessions."""
with Session(db.engine, expire_on_commit=False) as session:
err = self._base_task_pipeline._handle_error(
event=event, session=session, message_id=self._message_id
)
try:
yield session
session.commit()
except Exception:
session.rollback()
raise
def _ensure_workflow_initialized(self) -> None:
"""Fluent validation for workflow state."""
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _ensure_graph_runtime_initialized(self, graph_runtime_state: Optional[GraphRuntimeState]) -> GraphRuntimeState:
"""Fluent validation for graph runtime state."""
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
return graph_runtime_state
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
"""Handle ping events."""
yield self._base_task_pipeline._ping_stream_response()
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
"""Handle error events."""
with self._database_session() as session:
err = self._base_task_pipeline._handle_error(event=event, session=session, message_id=self._message_id)
yield self._base_task_pipeline._error_to_stream_response(err)
break
elif isinstance(event, QueueWorkflowStartedEvent):
# override graph runtime state
def _handle_workflow_started_event(
self, event: QueueWorkflowStartedEvent, *, graph_runtime_state: Optional[GraphRuntimeState] = None, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle workflow started events."""
# Override graph runtime state - this is a side effect but necessary
graph_runtime_state = event.graph_runtime_state
with Session(db.engine, expire_on_commit=False) as session:
# init workflow run
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_start()
self._workflow_run_id = workflow_execution.id_
message = self._get_message(session=session)
if not message:
raise ValueError(f"Message not found: {self._message_id}")
message.workflow_run_id = workflow_execution.id_
workflow_start_resp = self._workflow_response_converter.workflow_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_start_resp
elif isinstance(
event,
QueueNodeRetryEvent,
):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle node retry events."""
self._ensure_workflow_initialized()
with self._database_session() as session:
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_retried(
workflow_execution_id=self._workflow_run_id, event=event
)
@@ -336,13 +344,15 @@ class AdvancedChatAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
session.commit()
if node_retry_resp:
yield node_retry_resp
elif isinstance(event, QueueNodeStartedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_node_started_event(
self, event: QueueNodeStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node started events."""
self._ensure_workflow_initialized()
workflow_node_execution = self._workflow_cycle_manager.handle_node_execution_start(
workflow_execution_id=self._workflow_run_id, event=event
@@ -356,158 +366,200 @@ class AdvancedChatAppGenerateTaskPipeline:
if node_start_resp:
yield node_start_resp
elif isinstance(event, QueueNodeSucceededEvent):
def _handle_node_succeeded_event(
self, event: QueueNodeSucceededEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node succeeded events."""
# Record files if it's an answer node or end node
if event.node_type in [NodeType.ANSWER, NodeType.END]:
self._recorded_files.extend(
self._workflow_response_converter.fetch_files_from_node_outputs(event.outputs or {})
)
with Session(db.engine, expire_on_commit=False) as session:
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_success(
event=event
)
with self._database_session() as session:
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_success(event=event)
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
session.commit()
self._save_output_for_event(event, workflow_node_execution.id)
if node_finish_resp:
yield node_finish_resp
elif isinstance(
event,
QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
):
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_failed(
event=event
)
def _handle_node_failed_events(
self,
event: Union[
QueueNodeFailedEvent, QueueNodeInIterationFailedEvent, QueueNodeInLoopFailedEvent, QueueNodeExceptionEvent
],
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle various node failure events."""
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_failed(event=event)
node_finish_resp = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if isinstance(event, QueueNodeExceptionEvent):
self._save_output_for_event(event, workflow_node_execution.id)
if node_finish_resp:
yield node_finish_resp
elif isinstance(event, QueueParallelBranchRunStartedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
parallel_start_resp = (
self._workflow_response_converter.workflow_parallel_branch_start_to_stream_response(
def _handle_text_chunk_event(
self,
event: QueueTextChunkEvent,
*,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
queue_message: Optional[Union[WorkflowQueueMessage, MessageQueueMessage]] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
return
# Handle output moderation chunk
should_direct_answer = self._handle_output_moderation_chunk(delta_text)
if should_direct_answer:
return
# Only publish tts message at text chunk streaming
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
self._task_state.answer += delta_text
yield self._message_cycle_manager.message_to_stream_response(
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
)
def _handle_parallel_branch_started_event(
self, event: QueueParallelBranchRunStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle parallel branch started events."""
self._ensure_workflow_initialized()
parallel_start_resp = self._workflow_response_converter.workflow_parallel_branch_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
)
yield parallel_start_resp
elif isinstance(event, QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
parallel_finish_resp = (
self._workflow_response_converter.workflow_parallel_branch_finished_to_stream_response(
def _handle_parallel_branch_finished_events(
self, event: Union[QueueParallelBranchRunSucceededEvent, QueueParallelBranchRunFailedEvent], **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle parallel branch finished events."""
self._ensure_workflow_initialized()
parallel_finish_resp = self._workflow_response_converter.workflow_parallel_branch_finished_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
)
yield parallel_finish_resp
elif isinstance(event, QueueIterationStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_iteration_start_event(
self, event: QueueIterationStartEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration start events."""
self._ensure_workflow_initialized()
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_start_resp
elif isinstance(event, QueueIterationNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_iteration_next_event(
self, event: QueueIterationNextEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration next events."""
self._ensure_workflow_initialized()
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_next_resp
elif isinstance(event, QueueIterationCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_iteration_completed_event(
self, event: QueueIterationCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration completed events."""
self._ensure_workflow_initialized()
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_finish_resp
elif isinstance(event, QueueLoopStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop start events."""
self._ensure_workflow_initialized()
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_start_resp
elif isinstance(event, QueueLoopNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop next events."""
self._ensure_workflow_initialized()
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_next_resp
elif isinstance(event, QueueLoopCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_loop_completed_event(
self, event: QueueLoopCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle loop completed events."""
self._ensure_workflow_initialized()
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_finish_resp
elif isinstance(event, QueueWorkflowSucceededEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("workflow run not initialized.")
def _handle_workflow_succeeded_event(
self,
event: QueueWorkflowSucceededEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow succeeded events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with Session(db.engine, expire_on_commit=False) as session:
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_success(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
outputs=event.outputs,
conversation_id=self._conversation_id,
trace_manager=trace_manager,
)
workflow_finish_resp = self._workflow_response_converter.workflow_finish_to_stream_response(
session=session,
task_id=self._application_generate_entity.task_id,
@@ -515,20 +567,25 @@ class AdvancedChatAppGenerateTaskPipeline:
)
yield workflow_finish_resp
self._base_task_pipeline._queue_manager.publish(
QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE
)
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
self._base_task_pipeline._queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
with Session(db.engine, expire_on_commit=False) as session:
def _handle_workflow_partial_success_event(
self,
event: QueueWorkflowPartialSuccessEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow partial success events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_partial_success(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
outputs=event.outputs,
exceptions_count=event.exceptions_count,
conversation_id=None,
@@ -541,20 +598,25 @@ class AdvancedChatAppGenerateTaskPipeline:
)
yield workflow_finish_resp
self._base_task_pipeline._queue_manager.publish(
QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE
)
elif isinstance(event, QueueWorkflowFailedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
self._base_task_pipeline._queue_manager.publish(QueueAdvancedChatMessageEndEvent(), PublishFrom.TASK_PIPELINE)
with Session(db.engine, expire_on_commit=False) as session:
def _handle_workflow_failed_event(
self,
event: QueueWorkflowFailedEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow failed events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_failed(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
status=WorkflowExecutionStatus.FAILED,
error_message=event.error,
conversation_id=self._conversation_id,
@@ -567,16 +629,22 @@ class AdvancedChatAppGenerateTaskPipeline:
workflow_execution=workflow_execution,
)
err_event = QueueErrorEvent(error=ValueError(f"Run failed: {workflow_execution.error_message}"))
err = self._base_task_pipeline._handle_error(
event=err_event, session=session, message_id=self._message_id
)
err = self._base_task_pipeline._handle_error(event=err_event, session=session, message_id=self._message_id)
yield workflow_finish_resp
yield self._base_task_pipeline._error_to_stream_response(err)
break
elif isinstance(event, QueueStopEvent):
def _handle_stop_event(
self,
event: QueueStopEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle stop events."""
if self._workflow_run_id and graph_runtime_state:
with Session(db.engine, expire_on_commit=False) as session:
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_failed(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
@@ -593,7 +661,6 @@ class AdvancedChatAppGenerateTaskPipeline:
)
# Save message
self._save_message(session=session, graph_runtime_state=graph_runtime_state)
session.commit()
yield workflow_finish_resp
elif event.stopped_by in (
@@ -601,53 +668,21 @@ class AdvancedChatAppGenerateTaskPipeline:
QueueStopEvent.StopBy.ANNOTATION_REPLY,
):
# When hitting input-moderation or annotation-reply, the workflow will not start
with Session(db.engine, expire_on_commit=False) as session:
with self._database_session() as session:
# Save message
self._save_message(session=session)
session.commit()
yield self._message_end_to_stream_response()
break
elif isinstance(event, QueueRetrieverResourcesEvent):
self._message_cycle_manager.handle_retriever_resources(event)
with Session(db.engine, expire_on_commit=False) as session:
message = self._get_message(session=session)
message.message_metadata = self._task_state.metadata.model_dump_json()
session.commit()
elif isinstance(event, QueueAnnotationReplyEvent):
self._message_cycle_manager.handle_annotation_reply(event)
with Session(db.engine, expire_on_commit=False) as session:
message = self._get_message(session=session)
message.message_metadata = self._task_state.metadata.model_dump_json()
session.commit()
elif isinstance(event, QueueTextChunkEvent):
delta_text = event.text
if delta_text is None:
continue
# handle output moderation chunk
should_direct_answer = self._handle_output_moderation_chunk(delta_text)
if should_direct_answer:
continue
# only publish tts message at text chunk streaming
if tts_publisher:
tts_publisher.publish(queue_message)
self._task_state.answer += delta_text
yield self._message_cycle_manager.message_to_stream_response(
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
)
elif isinstance(event, QueueMessageReplaceEvent):
# published by moderation
yield self._message_cycle_manager.message_replace_to_stream_response(
answer=event.text, reason=event.reason
)
elif isinstance(event, QueueAdvancedChatMessageEndEvent):
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
def _handle_advanced_chat_message_end_event(
self,
event: QueueAdvancedChatMessageEndEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle advanced chat message end events."""
self._ensure_graph_runtime_initialized(graph_runtime_state)
output_moderation_answer = self._base_task_pipeline._handle_output_moderation_when_task_finished(
self._task_state.answer
@@ -660,19 +695,194 @@ class AdvancedChatAppGenerateTaskPipeline:
)
# Save message
with Session(db.engine, expire_on_commit=False) as session:
with self._database_session() as session:
self._save_message(session=session, graph_runtime_state=graph_runtime_state)
session.commit()
yield self._message_end_to_stream_response()
elif isinstance(event, QueueAgentLogEvent):
def _handle_retriever_resources_event(
self, event: QueueRetrieverResourcesEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle retriever resources events."""
self._message_cycle_manager.handle_retriever_resources(event)
with self._database_session() as session:
message = self._get_message(session=session)
message.message_metadata = self._task_state.metadata.model_dump_json()
return
yield # Make this a generator
def _handle_annotation_reply_event(
self, event: QueueAnnotationReplyEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle annotation reply events."""
self._message_cycle_manager.handle_annotation_reply(event)
with self._database_session() as session:
message = self._get_message(session=session)
message.message_metadata = self._task_state.metadata.model_dump_json()
return
yield # Make this a generator
def _handle_message_replace_event(
self, event: QueueMessageReplaceEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle message replace events."""
yield self._message_cycle_manager.message_replace_to_stream_response(answer=event.text, reason=event.reason)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
yield self._workflow_response_converter.handle_agent_log(
task_id=self._application_generate_entity.task_id, event=event
)
else:
continue
# publish None when task finished
def _get_event_handlers(self) -> dict[type, Callable]:
"""Get mapping of event types to their handlers using fluent pattern."""
return {
# Basic events
QueuePingEvent: self._handle_ping_event,
QueueErrorEvent: self._handle_error_event,
QueueTextChunkEvent: self._handle_text_chunk_event,
# Workflow events
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
QueueWorkflowFailedEvent: self._handle_workflow_failed_event,
# Node events
QueueNodeRetryEvent: self._handle_node_retry_event,
QueueNodeStartedEvent: self._handle_node_started_event,
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
# Parallel branch events
QueueParallelBranchRunStartedEvent: self._handle_parallel_branch_started_event,
# Iteration events
QueueIterationStartEvent: self._handle_iteration_start_event,
QueueIterationNextEvent: self._handle_iteration_next_event,
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
# Loop events
QueueLoopStartEvent: self._handle_loop_start_event,
QueueLoopNextEvent: self._handle_loop_next_event,
QueueLoopCompletedEvent: self._handle_loop_completed_event,
# Control events
QueueStopEvent: self._handle_stop_event,
# Message events
QueueRetrieverResourcesEvent: self._handle_retriever_resources_event,
QueueAnnotationReplyEvent: self._handle_annotation_reply_event,
QueueMessageReplaceEvent: self._handle_message_replace_event,
QueueAdvancedChatMessageEndEvent: self._handle_advanced_chat_message_end_event,
QueueAgentLogEvent: self._handle_agent_log_event,
}
def _dispatch_event(
self,
event: Any,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
queue_message: Optional[Union[WorkflowQueueMessage, MessageQueueMessage]] = None,
) -> Generator[StreamResponse, None, None]:
"""Dispatch events using elegant pattern matching."""
handlers = self._get_event_handlers()
event_type = type(event)
# Direct handler lookup
if handler := handlers.get(event_type):
yield from handler(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle node failure events with isinstance check
if isinstance(
event,
(
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeExceptionEvent,
),
):
yield from self._handle_node_failed_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle parallel branch finished events with isinstance check
if isinstance(event, (QueueParallelBranchRunSucceededEvent, QueueParallelBranchRunFailedEvent)):
yield from self._handle_parallel_branch_finished_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# For unhandled events, we continue (original behavior)
return
def _process_stream_response(
self,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response using elegant Fluent Python patterns.
Maintains exact same functionality as original 57-if-statement version.
"""
# Initialize graph runtime state
graph_runtime_state: Optional[GraphRuntimeState] = None
for queue_message in self._base_task_pipeline._queue_manager.listen():
event = queue_message.event
match event:
case QueueWorkflowStartedEvent():
graph_runtime_state = event.graph_runtime_state
yield from self._handle_workflow_started_event(event)
case QueueTextChunkEvent():
yield from self._handle_text_chunk_event(
event, tts_publisher=tts_publisher, queue_message=queue_message
)
case QueueErrorEvent():
yield from self._handle_error_event(event)
break
case QueueWorkflowFailedEvent():
yield from self._handle_workflow_failed_event(
event, graph_runtime_state=graph_runtime_state, trace_manager=trace_manager
)
break
case QueueStopEvent():
yield from self._handle_stop_event(
event, graph_runtime_state=graph_runtime_state, trace_manager=trace_manager
)
break
# Handle all other events through elegant dispatch
case _:
if responses := list(
self._dispatch_event(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
):
yield from responses
if tts_publisher:
tts_publisher.publish(None)
@@ -744,7 +954,6 @@ class AdvancedChatAppGenerateTaskPipeline:
"""
if self._base_task_pipeline._output_moderation_handler:
if self._base_task_pipeline._output_moderation_handler.should_direct_output():
# stop subscribe new token when output moderation should direct output
self._task_state.answer = self._base_task_pipeline._output_moderation_handler.get_final_output()
self._base_task_pipeline._queue_manager.publish(
QueueTextChunkEvent(text=self._task_state.answer), PublishFrom.TASK_PIPELINE

View File

@@ -1,7 +1,8 @@
import logging
import time
from collections.abc import Generator
from typing import Optional, Union
from collections.abc import Callable, Generator
from contextlib import contextmanager
from typing import Any, Optional, Union
from sqlalchemy.orm import Session
@@ -13,6 +14,7 @@ from core.app.entities.app_invoke_entities import (
WorkflowAppGenerateEntity,
)
from core.app.entities.queue_entities import (
MessageQueueMessage,
QueueAgentLogEvent,
QueueErrorEvent,
QueueIterationCompletedEvent,
@@ -38,11 +40,13 @@ from core.app.entities.queue_entities import (
QueueWorkflowPartialSuccessEvent,
QueueWorkflowStartedEvent,
QueueWorkflowSucceededEvent,
WorkflowQueueMessage,
)
from core.app.entities.task_entities import (
ErrorStreamResponse,
MessageAudioEndStreamResponse,
MessageAudioStreamResponse,
PingStreamResponse,
StreamResponse,
TextChunkStreamResponse,
WorkflowAppBlockingResponse,
@@ -54,6 +58,7 @@ from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTas
from core.base.tts import AppGeneratorTTSPublisher, AudioTrunk
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.entities.workflow_execution import WorkflowExecution, WorkflowExecutionStatus, WorkflowType
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.repositories.draft_variable_repository import DraftVariableSaverFactory
from core.workflow.repositories.workflow_execution_repository import WorkflowExecutionRepository
from core.workflow.repositories.workflow_node_execution_repository import WorkflowNodeExecutionRepository
@@ -246,30 +251,41 @@ class WorkflowAppGenerateTaskPipeline:
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response.
:return:
"""
graph_runtime_state = None
@contextmanager
def _database_session(self):
"""Context manager for database sessions."""
with Session(db.engine, expire_on_commit=False) as session:
try:
yield session
session.commit()
except Exception:
session.rollback()
raise
for queue_message in self._base_task_pipeline._queue_manager.listen():
event = queue_message.event
def _ensure_workflow_initialized(self) -> None:
"""Fluent validation for workflow state."""
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if isinstance(event, QueuePingEvent):
def _ensure_graph_runtime_initialized(self, graph_runtime_state: Optional[GraphRuntimeState]) -> GraphRuntimeState:
"""Fluent validation for graph runtime state."""
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
return graph_runtime_state
def _handle_ping_event(self, event: QueuePingEvent, **kwargs) -> Generator[PingStreamResponse, None, None]:
"""Handle ping events."""
yield self._base_task_pipeline._ping_stream_response()
elif isinstance(event, QueueErrorEvent):
def _handle_error_event(self, event: QueueErrorEvent, **kwargs) -> Generator[ErrorStreamResponse, None, None]:
"""Handle error events."""
err = self._base_task_pipeline._handle_error(event=event)
yield self._base_task_pipeline._error_to_stream_response(err)
break
elif isinstance(event, QueueWorkflowStartedEvent):
# override graph runtime state
graph_runtime_state = event.graph_runtime_state
def _handle_workflow_started_event(
self, event: QueueWorkflowStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle workflow started events."""
# init workflow run
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_start()
self._workflow_run_id = workflow_execution.id_
@@ -277,15 +293,13 @@ class WorkflowAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
yield start_resp
elif isinstance(
event,
QueueNodeRetryEvent,
):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
def _handle_node_retry_event(self, event: QueueNodeRetryEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle node retry events."""
self._ensure_workflow_initialized()
with self._database_session() as session:
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_retried(
workflow_execution_id=self._workflow_run_id,
event=event,
@@ -295,13 +309,15 @@ class WorkflowAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
session.commit()
if response:
yield response
elif isinstance(event, QueueNodeStartedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_node_started_event(
self, event: QueueNodeStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node started events."""
self._ensure_workflow_initialized()
workflow_node_execution = self._workflow_cycle_manager.handle_node_execution_start(
workflow_execution_id=self._workflow_run_id, event=event
@@ -314,10 +330,12 @@ class WorkflowAppGenerateTaskPipeline:
if node_start_response:
yield node_start_response
elif isinstance(event, QueueNodeSucceededEvent):
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_success(
event=event
)
def _handle_node_succeeded_event(
self, event: QueueNodeSucceededEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle node succeeded events."""
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_success(event=event)
node_success_response = self._workflow_response_converter.workflow_node_finish_to_stream_response(
event=event,
task_id=self._application_generate_entity.task_id,
@@ -328,13 +346,15 @@ class WorkflowAppGenerateTaskPipeline:
if node_success_response:
yield node_success_response
elif isinstance(
event,
QueueNodeFailedEvent
| QueueNodeInIterationFailedEvent
| QueueNodeInLoopFailedEvent
| QueueNodeExceptionEvent,
):
def _handle_node_failed_events(
self,
event: Union[
QueueNodeFailedEvent, QueueNodeInIterationFailedEvent, QueueNodeInLoopFailedEvent, QueueNodeExceptionEvent
],
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle various node failure events."""
workflow_node_execution = self._workflow_cycle_manager.handle_workflow_node_execution_failed(
event=event,
)
@@ -343,123 +363,130 @@ class WorkflowAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_node_execution=workflow_node_execution,
)
if isinstance(event, QueueNodeExceptionEvent):
self._save_output_for_event(event, workflow_node_execution.id)
if node_failed_response:
yield node_failed_response
elif isinstance(event, QueueParallelBranchRunStartedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_parallel_branch_started_event(
self, event: QueueParallelBranchRunStartedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle parallel branch started events."""
self._ensure_workflow_initialized()
parallel_start_resp = (
self._workflow_response_converter.workflow_parallel_branch_start_to_stream_response(
parallel_start_resp = self._workflow_response_converter.workflow_parallel_branch_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
)
yield parallel_start_resp
elif isinstance(event, QueueParallelBranchRunSucceededEvent | QueueParallelBranchRunFailedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_parallel_branch_finished_events(
self, event: Union[QueueParallelBranchRunSucceededEvent, QueueParallelBranchRunFailedEvent], **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle parallel branch finished events."""
self._ensure_workflow_initialized()
parallel_finish_resp = (
self._workflow_response_converter.workflow_parallel_branch_finished_to_stream_response(
parallel_finish_resp = self._workflow_response_converter.workflow_parallel_branch_finished_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
)
yield parallel_finish_resp
elif isinstance(event, QueueIterationStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_iteration_start_event(
self, event: QueueIterationStartEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration start events."""
self._ensure_workflow_initialized()
iter_start_resp = self._workflow_response_converter.workflow_iteration_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_start_resp
elif isinstance(event, QueueIterationNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_iteration_next_event(
self, event: QueueIterationNextEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration next events."""
self._ensure_workflow_initialized()
iter_next_resp = self._workflow_response_converter.workflow_iteration_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_next_resp
elif isinstance(event, QueueIterationCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_iteration_completed_event(
self, event: QueueIterationCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle iteration completed events."""
self._ensure_workflow_initialized()
iter_finish_resp = self._workflow_response_converter.workflow_iteration_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield iter_finish_resp
elif isinstance(event, QueueLoopStartEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_loop_start_event(self, event: QueueLoopStartEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop start events."""
self._ensure_workflow_initialized()
loop_start_resp = self._workflow_response_converter.workflow_loop_start_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_start_resp
elif isinstance(event, QueueLoopNextEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_loop_next_event(self, event: QueueLoopNextEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle loop next events."""
self._ensure_workflow_initialized()
loop_next_resp = self._workflow_response_converter.workflow_loop_next_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_next_resp
elif isinstance(event, QueueLoopCompletedEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
def _handle_loop_completed_event(
self, event: QueueLoopCompletedEvent, **kwargs
) -> Generator[StreamResponse, None, None]:
"""Handle loop completed events."""
self._ensure_workflow_initialized()
loop_finish_resp = self._workflow_response_converter.workflow_loop_completed_to_stream_response(
task_id=self._application_generate_entity.task_id,
workflow_execution_id=self._workflow_run_id,
event=event,
)
yield loop_finish_resp
elif isinstance(event, QueueWorkflowSucceededEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
def _handle_workflow_succeeded_event(
self,
event: QueueWorkflowSucceededEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow succeeded events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with Session(db.engine, expire_on_commit=False) as session:
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_success(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
outputs=event.outputs,
conversation_id=None,
trace_manager=trace_manager,
@@ -473,20 +500,26 @@ class WorkflowAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_finish_resp
elif isinstance(event, QueueWorkflowPartialSuccessEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
def _handle_workflow_partial_success_event(
self,
event: QueueWorkflowPartialSuccessEvent,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow partial success events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_partial_success(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
outputs=event.outputs,
exceptions_count=event.exceptions_count,
conversation_id=None,
@@ -501,26 +534,30 @@ class WorkflowAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_finish_resp
elif isinstance(event, QueueWorkflowFailedEvent | QueueStopEvent):
if not self._workflow_run_id:
raise ValueError("workflow run not initialized.")
if not graph_runtime_state:
raise ValueError("graph runtime state not initialized.")
with Session(db.engine, expire_on_commit=False) as session:
def _handle_workflow_failed_and_stop_events(
self,
event: Union[QueueWorkflowFailedEvent, QueueStopEvent],
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
trace_manager: Optional[TraceQueueManager] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle workflow failed and stop events."""
self._ensure_workflow_initialized()
validated_state = self._ensure_graph_runtime_initialized(graph_runtime_state)
with self._database_session() as session:
workflow_execution = self._workflow_cycle_manager.handle_workflow_run_failed(
workflow_run_id=self._workflow_run_id,
total_tokens=graph_runtime_state.total_tokens,
total_steps=graph_runtime_state.node_run_steps,
total_tokens=validated_state.total_tokens,
total_steps=validated_state.node_run_steps,
status=WorkflowExecutionStatus.FAILED
if isinstance(event, QueueWorkflowFailedEvent)
else WorkflowExecutionStatus.STOPPED,
error_message=event.error
if isinstance(event, QueueWorkflowFailedEvent)
else event.get_stop_reason(),
error_message=event.error if isinstance(event, QueueWorkflowFailedEvent) else event.get_stop_reason(),
conversation_id=None,
trace_manager=trace_manager,
exceptions_count=event.exceptions_count if isinstance(event, QueueWorkflowFailedEvent) else 0,
@@ -534,27 +571,172 @@ class WorkflowAppGenerateTaskPipeline:
task_id=self._application_generate_entity.task_id,
workflow_execution=workflow_execution,
)
session.commit()
yield workflow_finish_resp
elif isinstance(event, QueueTextChunkEvent):
def _handle_text_chunk_event(
self,
event: QueueTextChunkEvent,
*,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
queue_message: Optional[Union[WorkflowQueueMessage, MessageQueueMessage]] = None,
**kwargs,
) -> Generator[StreamResponse, None, None]:
"""Handle text chunk events."""
delta_text = event.text
if delta_text is None:
continue
return
# only publish tts message at text chunk streaming
if tts_publisher:
if tts_publisher and queue_message:
tts_publisher.publish(queue_message)
yield self._text_chunk_to_stream_response(
delta_text, from_variable_selector=event.from_variable_selector
)
elif isinstance(event, QueueAgentLogEvent):
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
"""Handle agent log events."""
yield self._workflow_response_converter.handle_agent_log(
task_id=self._application_generate_entity.task_id, event=event
)
else:
continue
def _get_event_handlers(self) -> dict[type, Callable]:
"""Get mapping of event types to their handlers using fluent pattern."""
return {
# Basic events
QueuePingEvent: self._handle_ping_event,
QueueErrorEvent: self._handle_error_event,
QueueTextChunkEvent: self._handle_text_chunk_event,
# Workflow events
QueueWorkflowStartedEvent: self._handle_workflow_started_event,
QueueWorkflowSucceededEvent: self._handle_workflow_succeeded_event,
QueueWorkflowPartialSuccessEvent: self._handle_workflow_partial_success_event,
# Node events
QueueNodeRetryEvent: self._handle_node_retry_event,
QueueNodeStartedEvent: self._handle_node_started_event,
QueueNodeSucceededEvent: self._handle_node_succeeded_event,
# Parallel branch events
QueueParallelBranchRunStartedEvent: self._handle_parallel_branch_started_event,
# Iteration events
QueueIterationStartEvent: self._handle_iteration_start_event,
QueueIterationNextEvent: self._handle_iteration_next_event,
QueueIterationCompletedEvent: self._handle_iteration_completed_event,
# Loop events
QueueLoopStartEvent: self._handle_loop_start_event,
QueueLoopNextEvent: self._handle_loop_next_event,
QueueLoopCompletedEvent: self._handle_loop_completed_event,
# Agent events
QueueAgentLogEvent: self._handle_agent_log_event,
}
def _dispatch_event(
self,
event: Any,
*,
graph_runtime_state: Optional[GraphRuntimeState] = None,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
queue_message: Optional[Union[WorkflowQueueMessage, MessageQueueMessage]] = None,
) -> Generator[StreamResponse, None, None]:
"""Dispatch events using elegant pattern matching."""
handlers = self._get_event_handlers()
event_type = type(event)
# Direct handler lookup
if handler := handlers.get(event_type):
yield from handler(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle node failure events with isinstance check
if isinstance(
event,
(
QueueNodeFailedEvent,
QueueNodeInIterationFailedEvent,
QueueNodeInLoopFailedEvent,
QueueNodeExceptionEvent,
),
):
yield from self._handle_node_failed_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle parallel branch finished events with isinstance check
if isinstance(event, (QueueParallelBranchRunSucceededEvent, QueueParallelBranchRunFailedEvent)):
yield from self._handle_parallel_branch_finished_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# Handle workflow failed and stop events with isinstance check
if isinstance(event, (QueueWorkflowFailedEvent, QueueStopEvent)):
yield from self._handle_workflow_failed_and_stop_events(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
return
# For unhandled events, we continue (original behavior)
return
def _process_stream_response(
self,
tts_publisher: Optional[AppGeneratorTTSPublisher] = None,
trace_manager: Optional[TraceQueueManager] = None,
) -> Generator[StreamResponse, None, None]:
"""
Process stream response using elegant Fluent Python patterns.
Maintains exact same functionality as original 44-if-statement version.
"""
# Initialize graph runtime state
graph_runtime_state = None
for queue_message in self._base_task_pipeline._queue_manager.listen():
event = queue_message.event
match event:
case QueueWorkflowStartedEvent():
graph_runtime_state = event.graph_runtime_state
yield from self._handle_workflow_started_event(event)
case QueueTextChunkEvent():
yield from self._handle_text_chunk_event(
event, tts_publisher=tts_publisher, queue_message=queue_message
)
case QueueErrorEvent():
yield from self._handle_error_event(event)
break
# Handle all other events through elegant dispatch
case _:
if responses := list(
self._dispatch_event(
event,
graph_runtime_state=graph_runtime_state,
tts_publisher=tts_publisher,
trace_manager=trace_manager,
queue_message=queue_message,
)
):
yield from responses
if tts_publisher:
tts_publisher.publish(None)