feat: support openGauss vector database (#15865)
This commit is contained in:
0
api/core/rag/datasource/vdb/opengauss/__init__.py
Normal file
0
api/core/rag/datasource/vdb/opengauss/__init__.py
Normal file
238
api/core/rag/datasource/vdb/opengauss/opengauss.py
Normal file
238
api/core/rag/datasource/vdb/opengauss/opengauss.py
Normal file
@@ -0,0 +1,238 @@
|
||||
import json
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from typing import Any
|
||||
|
||||
import psycopg2.extras # type: ignore
|
||||
import psycopg2.pool # type: ignore
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class OpenGaussConfig(BaseModel):
|
||||
host: str
|
||||
port: int
|
||||
user: str
|
||||
password: str
|
||||
database: str
|
||||
min_connection: int
|
||||
max_connection: int
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
if not values["host"]:
|
||||
raise ValueError("config OPENGAUSS_HOST is required")
|
||||
if not values["port"]:
|
||||
raise ValueError("config OPENGAUSS_PORT is required")
|
||||
if not values["user"]:
|
||||
raise ValueError("config OPENGAUSS_USER is required")
|
||||
if not values["password"]:
|
||||
raise ValueError("config OPENGAUSS_PASSWORD is required")
|
||||
if not values["database"]:
|
||||
raise ValueError("config OPENGAUSS_DATABASE is required")
|
||||
if not values["min_connection"]:
|
||||
raise ValueError("config OPENGAUSS_MIN_CONNECTION is required")
|
||||
if not values["max_connection"]:
|
||||
raise ValueError("config OPENGAUSS_MAX_CONNECTION is required")
|
||||
if values["min_connection"] > values["max_connection"]:
|
||||
raise ValueError("config OPENGAUSS_MIN_CONNECTION should less than OPENGAUSS_MAX_CONNECTION")
|
||||
return values
|
||||
|
||||
|
||||
SQL_CREATE_TABLE = """
|
||||
CREATE TABLE IF NOT EXISTS {table_name} (
|
||||
id UUID PRIMARY KEY,
|
||||
text TEXT NOT NULL,
|
||||
meta JSONB NOT NULL,
|
||||
embedding vector({dimension}) NOT NULL
|
||||
);
|
||||
"""
|
||||
|
||||
SQL_CREATE_INDEX = """
|
||||
CREATE INDEX IF NOT EXISTS embedding_cosine_{table_name}_idx ON {table_name}
|
||||
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
|
||||
"""
|
||||
|
||||
|
||||
class OpenGauss(BaseVector):
|
||||
def __init__(self, collection_name: str, config: OpenGaussConfig):
|
||||
super().__init__(collection_name)
|
||||
self.pool = self._create_connection_pool(config)
|
||||
self.table_name = f"embedding_{collection_name}"
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.OPENGAUSS
|
||||
|
||||
def _create_connection_pool(self, config: OpenGaussConfig):
|
||||
return psycopg2.pool.SimpleConnectionPool(
|
||||
config.min_connection,
|
||||
config.max_connection,
|
||||
host=config.host,
|
||||
port=config.port,
|
||||
user=config.user,
|
||||
password=config.password,
|
||||
database=config.database,
|
||||
)
|
||||
|
||||
@contextmanager
|
||||
def _get_cursor(self):
|
||||
conn = self.pool.getconn()
|
||||
cur = conn.cursor()
|
||||
try:
|
||||
yield cur
|
||||
finally:
|
||||
cur.close()
|
||||
conn.commit()
|
||||
self.pool.putconn(conn)
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
dimension = len(embeddings[0])
|
||||
self._create_collection(dimension)
|
||||
return self.add_texts(texts, embeddings)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
values = []
|
||||
pks = []
|
||||
for i, doc in enumerate(documents):
|
||||
if doc.metadata is not None:
|
||||
doc_id = doc.metadata.get("doc_id", str(uuid.uuid4()))
|
||||
pks.append(doc_id)
|
||||
values.append(
|
||||
(
|
||||
doc_id,
|
||||
doc.page_content,
|
||||
json.dumps(doc.metadata),
|
||||
embeddings[i],
|
||||
)
|
||||
)
|
||||
with self._get_cursor() as cur:
|
||||
psycopg2.extras.execute_values(
|
||||
cur, f"INSERT INTO {self.table_name} (id, text, meta, embedding) VALUES %s", values
|
||||
)
|
||||
return pks
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(f"SELECT id FROM {self.table_name} WHERE id = %s", (id,))
|
||||
return cur.fetchone() is not None
|
||||
|
||||
def get_by_ids(self, ids: list[str]) -> list[Document]:
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(f"SELECT meta, text FROM {self.table_name} WHERE id IN %s", (tuple(ids),))
|
||||
docs = []
|
||||
for record in cur:
|
||||
docs.append(Document(page_content=record[1], metadata=record[0]))
|
||||
return docs
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
# Avoiding crashes caused by performing delete operations on empty lists in certain scenarios
|
||||
# Scenario 1: extract a document fails, resulting in a table not being created.
|
||||
# Then clicking the retry button triggers a delete operation on an empty list.
|
||||
if not ids:
|
||||
return
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id IN %s", (tuple(ids),))
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE meta->>%s = %s", (key, value))
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
"""
|
||||
Search the nearest neighbors to a vector.
|
||||
|
||||
:param query_vector: The input vector to search for similar items.
|
||||
:param top_k: The number of nearest neighbors to return, default is 5.
|
||||
:return: List of Documents that are nearest to the query vector.
|
||||
"""
|
||||
top_k = kwargs.get("top_k", 4)
|
||||
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(
|
||||
f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name}"
|
||||
f" ORDER BY distance LIMIT {top_k}",
|
||||
(json.dumps(query_vector),),
|
||||
)
|
||||
docs = []
|
||||
score_threshold = float(kwargs.get("score_threshold") or 0.0)
|
||||
for record in cur:
|
||||
metadata, text, distance = record
|
||||
score = 1 - distance
|
||||
metadata["score"] = score
|
||||
if score > score_threshold:
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
top_k = kwargs.get("top_k", 5)
|
||||
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(
|
||||
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score
|
||||
FROM {self.table_name}
|
||||
WHERE to_tsvector(text) @@ plainto_tsquery(%s)
|
||||
ORDER BY score DESC
|
||||
LIMIT {top_k}""",
|
||||
# f"'{query}'" is required in order to account for whitespace in query
|
||||
(f"'{query}'", f"'{query}'"),
|
||||
)
|
||||
|
||||
docs = []
|
||||
|
||||
for record in cur:
|
||||
metadata, text, score = record
|
||||
metadata["score"] = score
|
||||
docs.append(Document(page_content=text, metadata=metadata))
|
||||
|
||||
return docs
|
||||
|
||||
def delete(self) -> None:
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
def _create_collection(self, dimension: int):
|
||||
cache_key = f"vector_indexing_{self._collection_name}"
|
||||
lock_name = f"{cache_key}_lock"
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
|
||||
with self._get_cursor() as cur:
|
||||
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
|
||||
if dimension <= 2000:
|
||||
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name))
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
|
||||
class OpenGaussFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> OpenGauss:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
|
||||
collection_name = class_prefix
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.OPENGAUSS, collection_name))
|
||||
|
||||
return OpenGauss(
|
||||
collection_name=collection_name,
|
||||
config=OpenGaussConfig(
|
||||
host=dify_config.OPENGAUSS_HOST or "localhost",
|
||||
port=dify_config.OPENGAUSS_PORT,
|
||||
user=dify_config.OPENGAUSS_USER or "postgres",
|
||||
password=dify_config.OPENGAUSS_PASSWORD or "",
|
||||
database=dify_config.OPENGAUSS_DATABASE or "dify",
|
||||
min_connection=dify_config.OPENGAUSS_MIN_CONNECTION,
|
||||
max_connection=dify_config.OPENGAUSS_MAX_CONNECTION,
|
||||
),
|
||||
)
|
@@ -148,6 +148,10 @@ class Vector:
|
||||
from core.rag.datasource.vdb.oceanbase.oceanbase_vector import OceanBaseVectorFactory
|
||||
|
||||
return OceanBaseVectorFactory
|
||||
case VectorType.OPENGAUSS:
|
||||
from core.rag.datasource.vdb.opengauss.opengauss import OpenGaussFactory
|
||||
|
||||
return OpenGaussFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
@@ -24,3 +24,4 @@ class VectorType(StrEnum):
|
||||
UPSTASH = "upstash"
|
||||
TIDB_ON_QDRANT = "tidb_on_qdrant"
|
||||
OCEANBASE = "oceanbase"
|
||||
OPENGAUSS = "opengauss"
|
||||
|
Reference in New Issue
Block a user