feat: optimize minimax llm call (#1312)

This commit is contained in:
takatost
2023-10-11 20:17:41 +08:00
committed by GitHub
parent c536f85b2e
commit 2851a9f04e
3 changed files with 287 additions and 12 deletions

View File

@@ -0,0 +1,273 @@
import json
from typing import Dict, Any, Optional, List, Tuple, Iterator
import requests
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.chat_models.base import BaseChatModel
from langchain.llms.utils import enforce_stop_tokens
from langchain.schema import BaseMessage, ChatResult, HumanMessage, AIMessage, SystemMessage
from langchain.schema.messages import AIMessageChunk
from langchain.schema.output import ChatGenerationChunk, ChatGeneration
from langchain.utils import get_from_dict_or_env
from pydantic import root_validator, Field, BaseModel
class _MinimaxEndpointClient(BaseModel):
"""An API client that talks to a Minimax llm endpoint."""
host: str
group_id: str
api_key: str
api_url: str
@root_validator(pre=True)
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "api_url" not in values:
host = values["host"]
group_id = values["group_id"]
api_url = f"{host}/v1/text/chatcompletion?GroupId={group_id}"
values["api_url"] = api_url
return values
def post(self, **request: Any) -> Any:
stream = 'stream' in request and request['stream']
headers = {"Authorization": f"Bearer {self.api_key}"}
response = requests.post(self.api_url, headers=headers, json=request, stream=stream, timeout=(5, 60))
if not response.ok:
raise ValueError(f"HTTP {response.status_code} error: {response.text}")
if not stream:
if response.json()["base_resp"]["status_code"] > 0:
raise ValueError(
f"API {response.json()['base_resp']['status_code']}"
f" error: {response.json()['base_resp']['status_msg']}"
)
return response.json()
else:
return response
class MinimaxChatLLM(BaseChatModel):
_client: _MinimaxEndpointClient
model: str = "abab5.5-chat"
"""Model name to use."""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 0.7
"""A non-negative float that tunes the degree of randomness in generation."""
top_p: float = 0.95
"""Total probability mass of tokens to consider at each step."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
streaming: bool = False
"""Whether to stream the response or return it all at once."""
minimax_api_host: Optional[str] = None
minimax_group_id: Optional[str] = None
minimax_api_key: Optional[str] = None
@property
def lc_secrets(self) -> Dict[str, str]:
return {"minimax_api_key": "MINIMAX_API_KEY"}
@property
def lc_serializable(self) -> bool:
return True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["minimax_api_key"] = get_from_dict_or_env(
values, "minimax_api_key", "MINIMAX_API_KEY"
)
values["minimax_group_id"] = get_from_dict_or_env(
values, "minimax_group_id", "MINIMAX_GROUP_ID"
)
# Get custom api url from environment.
values["minimax_api_host"] = get_from_dict_or_env(
values,
"minimax_api_host",
"MINIMAX_API_HOST",
default="https://api.minimax.chat",
)
values["_client"] = _MinimaxEndpointClient(
host=values["minimax_api_host"],
api_key=values["minimax_api_key"],
group_id=values["minimax_group_id"],
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model,
"tokens_to_generate": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"role_meta": {"user_name": "", "bot_name": "专家"},
**self.model_kwargs,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "minimax"
def _convert_message_to_dict(self, message: BaseMessage) -> dict:
if isinstance(message, HumanMessage):
message_dict = {"sender_type": "USER", "text": message.content}
elif isinstance(message, AIMessage):
message_dict = {"sender_type": "BOT", "text": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def _create_messages_and_prompt(
self, messages: List[BaseMessage]
) -> Tuple[List[Dict[str, Any]], str]:
prompt = ""
dict_messages = []
for m in messages:
if isinstance(m, SystemMessage):
if prompt:
prompt += "\n"
prompt += f"{m.content}"
continue
message = self._convert_message_to_dict(m)
dict_messages.append(message)
prompt = prompt if prompt else ' '
return dict_messages, prompt
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
generation: Optional[ChatGenerationChunk] = None
llm_output: Optional[Dict] = None
for chunk in self._stream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
if chunk.generation_info is not None \
and 'token_usage' in chunk.generation_info:
llm_output = {"token_usage": chunk.generation_info['token_usage'], "model_name": self.model}
assert generation is not None
return ChatResult(generations=[generation], llm_output=llm_output)
else:
message_dicts, prompt = self._create_messages_and_prompt(messages)
params = self._default_params
params["messages"] = message_dicts
params["prompt"] = prompt
params.update(kwargs)
response = self._client.post(**params)
return self._create_chat_result(response, stop)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, prompt = self._create_messages_and_prompt(messages)
params = self._default_params
params["messages"] = message_dicts
params["prompt"] = prompt
params["stream"] = True
params.update(kwargs)
for token in self._client.post(**params).iter_lines():
if token:
token = token.decode("utf-8")
if not token.startswith("data:"):
data = json.loads(token)
if "base_resp" in data and data["base_resp"]["status_code"] > 0:
raise ValueError(
f"API {data['base_resp']['status_code']}"
f" error: {data['base_resp']['status_msg']}"
)
else:
continue
token = token.lstrip("data:").strip()
data = json.loads(token)
content = data['choices'][0]['delta']
chunk_kwargs = {
'message': AIMessageChunk(content=content),
}
if 'usage' in data:
token_usage = data['usage']
overall_token_usage = {
'prompt_tokens': 0,
'completion_tokens': token_usage.get('total_tokens', 0),
'total_tokens': token_usage.get('total_tokens', 0)
}
chunk_kwargs['generation_info'] = {'token_usage': overall_token_usage}
yield ChatGenerationChunk(**chunk_kwargs)
if run_manager:
run_manager.on_llm_new_token(content)
def _create_chat_result(self, response: Dict[str, Any], stop: Optional[List[str]] = None) -> ChatResult:
text = response['reply']
if stop is not None:
# This is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
generations = [ChatGeneration(message=AIMessage(content=text))]
usage = response.get("usage")
# only return total_tokens in minimax response
token_usage = {
'prompt_tokens': 0,
'completion_tokens': usage.get('total_tokens', 0),
'total_tokens': usage.get('total_tokens', 0)
}
llm_output = {"token_usage": token_usage, "model_name": self.model}
return ChatResult(generations=generations, llm_output=llm_output)
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
"""Get the number of tokens in the messages.
Useful for checking if an input will fit in a model's context window.
Args:
messages: The message inputs to tokenize.
Returns:
The sum of the number of tokens across the messages.
"""
return sum([self.get_num_tokens(m.content) for m in messages])
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
token_usage: dict = {}
for output in llm_outputs:
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
return {"token_usage": token_usage, "model_name": self.model}