Feature/newnew workflow loop node (#14863)

Co-authored-by: arkunzz <4873204@qq.com>
This commit is contained in:
Wood
2025-03-05 17:41:15 +08:00
committed by GitHub
parent da91217bc9
commit 2c17bb2c36
131 changed files with 6031 additions and 159 deletions

View File

@@ -0,0 +1,5 @@
from .entities import LoopNodeData
from .loop_node import LoopNode
from .loop_start_node import LoopStartNode
__all__ = ["LoopNode", "LoopNodeData", "LoopStartNode"]

View File

@@ -1,13 +1,54 @@
from core.workflow.nodes.base import BaseIterationNodeData, BaseIterationState
from typing import Any, Literal, Optional
from pydantic import Field
from core.workflow.nodes.base import BaseLoopNodeData, BaseLoopState, BaseNodeData
from core.workflow.utils.condition.entities import Condition
class LoopNodeData(BaseIterationNodeData):
class LoopNodeData(BaseLoopNodeData):
"""
Loop Node Data.
"""
loop_count: int # Maximum number of loops
break_conditions: list[Condition] # Conditions to break the loop
logical_operator: Literal["and", "or"]
class LoopState(BaseIterationState):
class LoopStartNodeData(BaseNodeData):
"""
Loop Start Node Data.
"""
pass
class LoopState(BaseLoopState):
"""
Loop State.
"""
outputs: list[Any] = Field(default_factory=list)
current_output: Optional[Any] = None
class MetaData(BaseLoopState.MetaData):
"""
Data.
"""
loop_length: int
def get_last_output(self) -> Optional[Any]:
"""
Get last output.
"""
if self.outputs:
return self.outputs[-1]
return None
def get_current_output(self) -> Optional[Any]:
"""
Get current output.
"""
return self.current_output

View File

@@ -1,9 +1,35 @@
from typing import Any
import logging
from collections.abc import Generator, Mapping, Sequence
from datetime import datetime, timezone
from typing import Any, cast
from configs import dify_config
from core.variables import IntegerSegment
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
from core.workflow.graph_engine.entities.event import (
BaseGraphEvent,
BaseNodeEvent,
BaseParallelBranchEvent,
GraphRunFailedEvent,
InNodeEvent,
LoopRunFailedEvent,
LoopRunNextEvent,
LoopRunStartedEvent,
LoopRunSucceededEvent,
NodeRunFailedEvent,
NodeRunStartedEvent,
NodeRunStreamChunkEvent,
NodeRunSucceededEvent,
)
from core.workflow.graph_engine.entities.graph import Graph
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.loop.entities import LoopNodeData, LoopState
from core.workflow.utils.condition.entities import Condition
from core.workflow.nodes.event import NodeEvent, RunCompletedEvent
from core.workflow.nodes.loop.entities import LoopNodeData
from core.workflow.utils.condition.processor import ConditionProcessor
from models.workflow import WorkflowNodeExecutionStatus
logger = logging.getLogger(__name__)
class LoopNode(BaseNode[LoopNodeData]):
@@ -14,24 +40,323 @@ class LoopNode(BaseNode[LoopNodeData]):
_node_data_cls = LoopNodeData
_node_type = NodeType.LOOP
def _run(self) -> LoopState: # type: ignore
return super()._run() # type: ignore
def _run(self) -> Generator[NodeEvent | InNodeEvent, None, None]:
"""Run the node."""
# Get inputs
loop_count = self.node_data.loop_count
break_conditions = self.node_data.break_conditions
logical_operator = self.node_data.logical_operator
inputs = {"loop_count": loop_count}
if not self.node_data.start_node_id:
raise ValueError(f"field start_node_id in loop {self.node_id} not found")
# Initialize graph
loop_graph = Graph.init(graph_config=self.graph_config, root_node_id=self.node_data.start_node_id)
if not loop_graph:
raise ValueError("loop graph not found")
# Initialize variable pool
variable_pool = self.graph_runtime_state.variable_pool
variable_pool.add([self.node_id, "index"], 0)
from core.workflow.graph_engine.graph_engine import GraphEngine
graph_engine = GraphEngine(
tenant_id=self.tenant_id,
app_id=self.app_id,
workflow_type=self.workflow_type,
workflow_id=self.workflow_id,
user_id=self.user_id,
user_from=self.user_from,
invoke_from=self.invoke_from,
call_depth=self.workflow_call_depth,
graph=loop_graph,
graph_config=self.graph_config,
variable_pool=variable_pool,
max_execution_steps=dify_config.WORKFLOW_MAX_EXECUTION_STEPS,
max_execution_time=dify_config.WORKFLOW_MAX_EXECUTION_TIME,
thread_pool_id=self.thread_pool_id,
)
start_at = datetime.now(timezone.utc).replace(tzinfo=None)
condition_processor = ConditionProcessor()
# Start Loop event
yield LoopRunStartedEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
metadata={"loop_length": loop_count},
predecessor_node_id=self.previous_node_id,
)
yield LoopRunNextEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
index=0,
pre_loop_output=None,
)
try:
check_break_result = False
for i in range(loop_count):
# Run workflow
rst = graph_engine.run()
current_index_variable = variable_pool.get([self.node_id, "index"])
if not isinstance(current_index_variable, IntegerSegment):
raise ValueError(f"loop {self.node_id} current index not found")
current_index = current_index_variable.value
check_break_result = False
for event in rst:
if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_loop_id:
event.in_loop_id = self.node_id
if (
isinstance(event, BaseNodeEvent)
and event.node_type == NodeType.LOOP_START
and not isinstance(event, NodeRunStreamChunkEvent)
):
continue
if isinstance(event, NodeRunSucceededEvent):
yield self._handle_event_metadata(event=event, iter_run_index=current_index)
# Check if all variables in break conditions exist
exists_variable = False
for condition in break_conditions:
if not self.graph_runtime_state.variable_pool.get(condition.variable_selector):
exists_variable = False
break
else:
exists_variable = True
if exists_variable:
input_conditions, group_result, check_break_result = condition_processor.process_conditions(
variable_pool=self.graph_runtime_state.variable_pool,
conditions=break_conditions,
operator=logical_operator,
)
if check_break_result:
break
elif isinstance(event, BaseGraphEvent):
if isinstance(event, GraphRunFailedEvent):
# Loop run failed
yield LoopRunFailedEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
steps=i,
metadata={
NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens,
"completed_reason": "error",
},
error=event.error,
)
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=event.error,
metadata={
NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens
},
)
)
return
elif isinstance(event, NodeRunFailedEvent):
# Loop run failed
yield event
yield LoopRunFailedEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
steps=i,
metadata={
NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens,
"completed_reason": "error",
},
error=event.error,
)
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=event.error,
metadata={
NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens
},
)
)
return
else:
yield self._handle_event_metadata(event=cast(InNodeEvent, event), iter_run_index=current_index)
# Remove all nodes outputs from variable pool
for node_id in loop_graph.node_ids:
variable_pool.remove([node_id])
if check_break_result:
break
# Move to next loop
next_index = current_index + 1
variable_pool.add([self.node_id, "index"], next_index)
yield LoopRunNextEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
index=next_index,
pre_loop_output=None,
)
# Loop completed successfully
yield LoopRunSucceededEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
steps=loop_count,
metadata={
NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens,
"completed_reason": "loop_break" if check_break_result else "loop_completed",
},
)
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
metadata={NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens},
)
)
except Exception as e:
# Loop failed
logger.exception("Loop run failed")
yield LoopRunFailedEvent(
loop_id=self.id,
loop_node_id=self.node_id,
loop_node_type=self.node_type,
loop_node_data=self.node_data,
start_at=start_at,
inputs=inputs,
steps=loop_count,
metadata={
"total_tokens": graph_engine.graph_runtime_state.total_tokens,
"completed_reason": "error",
},
error=str(e),
)
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e),
metadata={NodeRunMetadataKey.TOTAL_TOKENS: graph_engine.graph_runtime_state.total_tokens},
)
)
finally:
# Clean up
variable_pool.remove([self.node_id, "index"])
def _handle_event_metadata(
self,
*,
event: BaseNodeEvent | InNodeEvent,
iter_run_index: int,
) -> NodeRunStartedEvent | BaseNodeEvent | InNodeEvent:
"""
add iteration metadata to event.
"""
if not isinstance(event, BaseNodeEvent):
return event
if event.route_node_state.node_run_result:
metadata = event.route_node_state.node_run_result.metadata
if not metadata:
metadata = {}
if NodeRunMetadataKey.LOOP_ID not in metadata:
metadata = {
**metadata,
NodeRunMetadataKey.LOOP_ID: self.node_id,
NodeRunMetadataKey.LOOP_INDEX: iter_run_index,
}
event.route_node_state.node_run_result.metadata = metadata
return event
@classmethod
def get_conditions(cls, node_config: dict[str, Any]) -> list[Condition]:
def _extract_variable_selector_to_variable_mapping(
cls,
*,
graph_config: Mapping[str, Any],
node_id: str,
node_data: LoopNodeData,
) -> Mapping[str, Sequence[str]]:
"""
Get conditions.
Extract variable selector to variable mapping
:param graph_config: graph config
:param node_id: node id
:param node_data: node data
:return:
"""
node_id = node_config.get("id")
if not node_id:
return []
variable_mapping = {}
# TODO waiting for implementation
return [
Condition( # type: ignore
variable_selector=[node_id, "index"],
comparison_operator="",
value_type="value_selector",
value_selector=[],
)
]
# init graph
loop_graph = Graph.init(graph_config=graph_config, root_node_id=node_data.start_node_id)
if not loop_graph:
raise ValueError("loop graph not found")
for sub_node_id, sub_node_config in loop_graph.node_id_config_mapping.items():
if sub_node_config.get("data", {}).get("loop_id") != node_id:
continue
# variable selector to variable mapping
try:
# Get node class
from core.workflow.nodes.node_mapping import NODE_TYPE_CLASSES_MAPPING
node_type = NodeType(sub_node_config.get("data", {}).get("type"))
if node_type not in NODE_TYPE_CLASSES_MAPPING:
continue
node_version = sub_node_config.get("data", {}).get("version", "1")
node_cls = NODE_TYPE_CLASSES_MAPPING[node_type][node_version]
sub_node_variable_mapping = node_cls.extract_variable_selector_to_variable_mapping(
graph_config=graph_config, config=sub_node_config
)
sub_node_variable_mapping = cast(dict[str, Sequence[str]], sub_node_variable_mapping)
except NotImplementedError:
sub_node_variable_mapping = {}
# remove loop variables
sub_node_variable_mapping = {
sub_node_id + "." + key: value
for key, value in sub_node_variable_mapping.items()
if value[0] != node_id
}
variable_mapping.update(sub_node_variable_mapping)
# remove variable out from loop
variable_mapping = {
key: value for key, value in variable_mapping.items() if value[0] not in loop_graph.node_ids
}
return variable_mapping

View File

@@ -0,0 +1,20 @@
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.loop.entities import LoopStartNodeData
from models.workflow import WorkflowNodeExecutionStatus
class LoopStartNode(BaseNode):
"""
Loop Start Node.
"""
_node_data_cls = LoopStartNodeData
_node_type = NodeType.LOOP_START
def _run(self) -> NodeRunResult:
"""
Run the node.
"""
return NodeRunResult(status=WorkflowNodeExecutionStatus.SUCCEEDED)