refactor(api): Separate SegmentType for Integer/Float to Enable Pydantic Serialization (#22025)

refactor(api): Separate SegmentType for Integer/Float to Enable Pydantic Serialization (#22025)

This PR addresses serialization issues in the VariablePool model by separating the `value_type` tags for `IntegerSegment`/`FloatSegment` and `IntegerVariable`/`FloatVariable`. Previously, both Integer and Float types shared the same `SegmentType.NUMBER` tag, causing conflicts during serialization.

Key changes:
- Introduce distinct `value_type` tags for Integer and Float segments/variables
- Add `VariableUnion` and `SegmentUnion` types for proper type discrimination
- Leverage Pydantic's discriminated union feature for seamless serialization/deserialization
- Enable accurate serialization of data structures containing these types

Closes #22024.
This commit is contained in:
QuantumGhost
2025-07-16 12:31:37 +08:00
committed by GitHub
parent 229b4d621e
commit 2c1ab4879f
58 changed files with 2325 additions and 328 deletions

View File

@@ -1,9 +1,9 @@
import json
import sys
from collections.abc import Mapping, Sequence
from typing import Any
from typing import Annotated, Any, TypeAlias
from pydantic import BaseModel, ConfigDict, field_validator
from pydantic import BaseModel, ConfigDict, Discriminator, Tag, field_validator
from core.file import File
@@ -11,6 +11,11 @@ from .types import SegmentType
class Segment(BaseModel):
"""Segment is runtime type used during the execution of workflow.
Note: this class is abstract, you should use subclasses of this class instead.
"""
model_config = ConfigDict(frozen=True)
value_type: SegmentType
@@ -73,7 +78,7 @@ class StringSegment(Segment):
class FloatSegment(Segment):
value_type: SegmentType = SegmentType.NUMBER
value_type: SegmentType = SegmentType.FLOAT
value: float
# NOTE(QuantumGhost): seems that the equality for FloatSegment with `NaN` value has some problems.
# The following tests cannot pass.
@@ -92,7 +97,7 @@ class FloatSegment(Segment):
class IntegerSegment(Segment):
value_type: SegmentType = SegmentType.NUMBER
value_type: SegmentType = SegmentType.INTEGER
value: int
@@ -181,3 +186,46 @@ class ArrayFileSegment(ArraySegment):
@property
def text(self) -> str:
return ""
def get_segment_discriminator(v: Any) -> SegmentType | None:
if isinstance(v, Segment):
return v.value_type
elif isinstance(v, dict):
value_type = v.get("value_type")
if value_type is None:
return None
try:
seg_type = SegmentType(value_type)
except ValueError:
return None
return seg_type
else:
# return None if the discriminator value isn't found
return None
# The `SegmentUnion`` type is used to enable serialization and deserialization with Pydantic.
# Use `Segment` for type hinting when serialization is not required.
#
# Note:
# - All variants in `SegmentUnion` must inherit from the `Segment` class.
# - The union must include all non-abstract subclasses of `Segment`, except:
# - `SegmentGroup`, which is not added to the variable pool.
# - `Variable` and its subclasses, which are handled by `VariableUnion`.
SegmentUnion: TypeAlias = Annotated[
(
Annotated[NoneSegment, Tag(SegmentType.NONE)]
| Annotated[StringSegment, Tag(SegmentType.STRING)]
| Annotated[FloatSegment, Tag(SegmentType.FLOAT)]
| Annotated[IntegerSegment, Tag(SegmentType.INTEGER)]
| Annotated[ObjectSegment, Tag(SegmentType.OBJECT)]
| Annotated[FileSegment, Tag(SegmentType.FILE)]
| Annotated[ArrayAnySegment, Tag(SegmentType.ARRAY_ANY)]
| Annotated[ArrayStringSegment, Tag(SegmentType.ARRAY_STRING)]
| Annotated[ArrayNumberSegment, Tag(SegmentType.ARRAY_NUMBER)]
| Annotated[ArrayObjectSegment, Tag(SegmentType.ARRAY_OBJECT)]
| Annotated[ArrayFileSegment, Tag(SegmentType.ARRAY_FILE)]
),
Discriminator(get_segment_discriminator),
]