refactor(api): Separate SegmentType for Integer/Float to Enable Pydantic Serialization (#22025)

refactor(api): Separate SegmentType for Integer/Float to Enable Pydantic Serialization (#22025)

This PR addresses serialization issues in the VariablePool model by separating the `value_type` tags for `IntegerSegment`/`FloatSegment` and `IntegerVariable`/`FloatVariable`. Previously, both Integer and Float types shared the same `SegmentType.NUMBER` tag, causing conflicts during serialization.

Key changes:
- Introduce distinct `value_type` tags for Integer and Float segments/variables
- Add `VariableUnion` and `SegmentUnion` types for proper type discrimination
- Leverage Pydantic's discriminated union feature for seamless serialization/deserialization
- Enable accurate serialization of data structures containing these types

Closes #22024.
This commit is contained in:
QuantumGhost
2025-07-16 12:31:37 +08:00
committed by GitHub
parent 229b4d621e
commit 2c1ab4879f
58 changed files with 2325 additions and 328 deletions

View File

@@ -17,8 +17,12 @@ class GraphRuntimeState(BaseModel):
"""total tokens"""
llm_usage: LLMUsage = LLMUsage.empty_usage()
"""llm usage info"""
# The `outputs` field stores the final output values generated by executing workflows or chatflows.
#
# Note: Since the type of this field is `dict[str, Any]`, its values may not remain consistent
# after a serialization and deserialization round trip.
outputs: dict[str, Any] = {}
"""outputs"""
node_run_steps: int = 0
"""node run steps"""