chore(api/core): apply ruff reformatting (#7624)
This commit is contained in:
@@ -25,17 +25,19 @@ from models.model import Message
|
||||
|
||||
class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
_is_first_iteration = True
|
||||
_ignore_observation_providers = ['wenxin']
|
||||
_ignore_observation_providers = ["wenxin"]
|
||||
_historic_prompt_messages: list[PromptMessage] = None
|
||||
_agent_scratchpad: list[AgentScratchpadUnit] = None
|
||||
_instruction: str = None
|
||||
_query: str = None
|
||||
_prompt_messages_tools: list[PromptMessage] = None
|
||||
|
||||
def run(self, message: Message,
|
||||
query: str,
|
||||
inputs: dict[str, str],
|
||||
) -> Union[Generator, LLMResult]:
|
||||
def run(
|
||||
self,
|
||||
message: Message,
|
||||
query: str,
|
||||
inputs: dict[str, str],
|
||||
) -> Union[Generator, LLMResult]:
|
||||
"""
|
||||
Run Cot agent application
|
||||
"""
|
||||
@@ -46,17 +48,16 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
# check model mode
|
||||
if 'Observation' not in app_generate_entity.model_conf.stop:
|
||||
if "Observation" not in app_generate_entity.model_conf.stop:
|
||||
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
|
||||
app_generate_entity.model_conf.stop.append('Observation')
|
||||
app_generate_entity.model_conf.stop.append("Observation")
|
||||
|
||||
app_config = self.app_config
|
||||
|
||||
# init instruction
|
||||
inputs = inputs or {}
|
||||
instruction = app_config.prompt_template.simple_prompt_template
|
||||
self._instruction = self._fill_in_inputs_from_external_data_tools(
|
||||
instruction, inputs)
|
||||
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
|
||||
@@ -65,16 +66,14 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
|
||||
|
||||
function_call_state = True
|
||||
llm_usage = {
|
||||
'usage': None
|
||||
}
|
||||
final_answer = ''
|
||||
llm_usage = {"usage": None}
|
||||
final_answer = ""
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
|
||||
if not final_llm_usage_dict['usage']:
|
||||
final_llm_usage_dict['usage'] = usage
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict['usage']
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
@@ -94,17 +93,13 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
message_file_ids = []
|
||||
|
||||
agent_thought = self.create_agent_thought(
|
||||
message_id=message.id,
|
||||
message='',
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
messages_ids=message_file_ids
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
if iteration_step > 1:
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
@@ -125,21 +120,20 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
raise ValueError("failed to invoke llm")
|
||||
|
||||
usage_dict = {}
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(
|
||||
chunks, usage_dict)
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response='',
|
||||
thought='',
|
||||
action_str='',
|
||||
observation='',
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
@@ -154,61 +148,51 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
yield LLMResultChunk(
|
||||
model=self.model_config.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint='',
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=chunk
|
||||
),
|
||||
usage=None
|
||||
)
|
||||
system_fingerprint="",
|
||||
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
|
||||
)
|
||||
|
||||
scratchpad.thought = scratchpad.thought.strip(
|
||||
) or 'I am thinking about how to help you'
|
||||
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
|
||||
self._agent_scratchpad.append(scratchpad)
|
||||
|
||||
# get llm usage
|
||||
if 'usage' in usage_dict:
|
||||
increase_usage(llm_usage, usage_dict['usage'])
|
||||
if "usage" in usage_dict:
|
||||
increase_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
usage_dict['usage'] = LLMUsage.empty_usage()
|
||||
usage_dict["usage"] = LLMUsage.empty_usage()
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
||||
tool_input={
|
||||
scratchpad.action.action_name: scratchpad.action.action_input
|
||||
} if scratchpad.action else {},
|
||||
tool_name=scratchpad.action.action_name if scratchpad.action else "",
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought,
|
||||
observation='',
|
||||
observation="",
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict['usage']
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
if not scratchpad.is_final():
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
if not scratchpad.action:
|
||||
# failed to extract action, return final answer directly
|
||||
final_answer = ''
|
||||
final_answer = ""
|
||||
else:
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
if isinstance(scratchpad.action.action_input, dict):
|
||||
final_answer = json.dumps(
|
||||
scratchpad.action.action_input)
|
||||
final_answer = json.dumps(scratchpad.action.action_input)
|
||||
elif isinstance(scratchpad.action.action_input, str):
|
||||
final_answer = scratchpad.action.action_input
|
||||
else:
|
||||
final_answer = f'{scratchpad.action.action_input}'
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
except json.JSONDecodeError:
|
||||
final_answer = f'{scratchpad.action.action_input}'
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
else:
|
||||
function_call_state = True
|
||||
# action is tool call, invoke tool
|
||||
@@ -224,21 +208,18 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name=scratchpad.action.action_name,
|
||||
tool_input={
|
||||
scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
thought=scratchpad.thought,
|
||||
observation={
|
||||
scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta={
|
||||
scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
||||
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
llm_usage=usage_dict['usage']
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in self._prompt_messages_tools:
|
||||
@@ -250,44 +231,45 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(
|
||||
content=final_answer
|
||||
),
|
||||
usage=llm_usage['usage']
|
||||
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
|
||||
),
|
||||
system_fingerprint=''
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
tool_name='',
|
||||
tool_name="",
|
||||
tool_input={},
|
||||
tool_invoke_meta={},
|
||||
thought=final_answer,
|
||||
observation={},
|
||||
answer=final_answer,
|
||||
messages_ids=[]
|
||||
messages_ids=[],
|
||||
)
|
||||
|
||||
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
||||
# publish end event
|
||||
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(
|
||||
content=final_answer
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] if llm_usage["usage"] else LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
||||
system_fingerprint=''
|
||||
)), PublishFrom.APPLICATION_MANAGER)
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
|
||||
tool_instances: dict[str, Tool],
|
||||
message_file_ids: list[str],
|
||||
trace_manager: Optional[TraceQueueManager] = None
|
||||
) -> tuple[str, ToolInvokeMeta]:
|
||||
def _handle_invoke_action(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
tool_instances: dict[str, Tool],
|
||||
message_file_ids: list[str],
|
||||
trace_manager: Optional[TraceQueueManager] = None,
|
||||
) -> tuple[str, ToolInvokeMeta]:
|
||||
"""
|
||||
handle invoke action
|
||||
:param action: action
|
||||
@@ -326,13 +308,12 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
# publish files
|
||||
for message_file_id, save_as in message_files:
|
||||
if save_as:
|
||||
self.variables_pool.set_file(
|
||||
tool_name=tool_call_name, value=message_file_id, name=save_as)
|
||||
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
|
||||
|
||||
# publish message file
|
||||
self.queue_manager.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file_id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
@@ -342,10 +323,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
"""
|
||||
convert dict to action
|
||||
"""
|
||||
return AgentScratchpadUnit.Action(
|
||||
action_name=action['action'],
|
||||
action_input=action['action_input']
|
||||
)
|
||||
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
|
||||
|
||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
||||
"""
|
||||
@@ -353,7 +331,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
"""
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
|
||||
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
|
||||
except Exception as e:
|
||||
continue
|
||||
|
||||
@@ -370,14 +348,14 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
@abstractmethod
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
organize prompt messages
|
||||
organize prompt messages
|
||||
"""
|
||||
|
||||
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
format assistant message
|
||||
format assistant message
|
||||
"""
|
||||
message = ''
|
||||
message = ""
|
||||
for scratchpad in agent_scratchpad:
|
||||
if scratchpad.is_final():
|
||||
message += f"Final Answer: {scratchpad.agent_response}"
|
||||
@@ -390,9 +368,11 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
|
||||
return message
|
||||
|
||||
def _organize_historic_prompt_messages(self, current_session_messages: list[PromptMessage] = None) -> list[PromptMessage]:
|
||||
def _organize_historic_prompt_messages(
|
||||
self, current_session_messages: list[PromptMessage] = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
organize historic prompt messages
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
scratchpads: list[AgentScratchpadUnit] = []
|
||||
@@ -403,8 +383,8 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
if not current_scratchpad:
|
||||
current_scratchpad = AgentScratchpadUnit(
|
||||
agent_response=message.content,
|
||||
thought=message.content or 'I am thinking about how to help you',
|
||||
action_str='',
|
||||
thought=message.content or "I am thinking about how to help you",
|
||||
action_str="",
|
||||
action=None,
|
||||
observation=None,
|
||||
)
|
||||
@@ -413,12 +393,9 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
try:
|
||||
current_scratchpad.action = AgentScratchpadUnit.Action(
|
||||
action_name=message.tool_calls[0].function.name,
|
||||
action_input=json.loads(
|
||||
message.tool_calls[0].function.arguments)
|
||||
)
|
||||
current_scratchpad.action_str = json.dumps(
|
||||
current_scratchpad.action.to_dict()
|
||||
action_input=json.loads(message.tool_calls[0].function.arguments),
|
||||
)
|
||||
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
|
||||
except:
|
||||
pass
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
@@ -426,23 +403,19 @@ class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
current_scratchpad.observation = message.content
|
||||
elif isinstance(message, UserPromptMessage):
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(
|
||||
content=self._format_assistant_message(scratchpads)
|
||||
))
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
scratchpads = []
|
||||
current_scratchpad = None
|
||||
|
||||
result.append(message)
|
||||
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(
|
||||
content=self._format_assistant_message(scratchpads)
|
||||
))
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
|
||||
historic_prompts = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=current_session_messages or [],
|
||||
history_messages=result,
|
||||
memory=self.memory
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
return historic_prompts
|
||||
|
Reference in New Issue
Block a user