chore(api/core): apply ruff reformatting (#7624)

This commit is contained in:
Bowen Liang
2024-09-10 17:00:20 +08:00
committed by GitHub
parent 178730266d
commit 2cf1187b32
724 changed files with 21180 additions and 21123 deletions

View File

@@ -25,17 +25,19 @@ from models.model import Message
class CotAgentRunner(BaseAgentRunner, ABC):
_is_first_iteration = True
_ignore_observation_providers = ['wenxin']
_ignore_observation_providers = ["wenxin"]
_historic_prompt_messages: list[PromptMessage] = None
_agent_scratchpad: list[AgentScratchpadUnit] = None
_instruction: str = None
_query: str = None
_prompt_messages_tools: list[PromptMessage] = None
def run(self, message: Message,
query: str,
inputs: dict[str, str],
) -> Union[Generator, LLMResult]:
def run(
self,
message: Message,
query: str,
inputs: dict[str, str],
) -> Union[Generator, LLMResult]:
"""
Run Cot agent application
"""
@@ -46,17 +48,16 @@ class CotAgentRunner(BaseAgentRunner, ABC):
trace_manager = app_generate_entity.trace_manager
# check model mode
if 'Observation' not in app_generate_entity.model_conf.stop:
if "Observation" not in app_generate_entity.model_conf.stop:
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
app_generate_entity.model_conf.stop.append('Observation')
app_generate_entity.model_conf.stop.append("Observation")
app_config = self.app_config
# init instruction
inputs = inputs or {}
instruction = app_config.prompt_template.simple_prompt_template
self._instruction = self._fill_in_inputs_from_external_data_tools(
instruction, inputs)
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
@@ -65,16 +66,14 @@ class CotAgentRunner(BaseAgentRunner, ABC):
tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
function_call_state = True
llm_usage = {
'usage': None
}
final_answer = ''
llm_usage = {"usage": None}
final_answer = ""
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
if not final_llm_usage_dict["usage"]:
final_llm_usage_dict["usage"] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage = final_llm_usage_dict["usage"]
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
@@ -94,17 +93,13 @@ class CotAgentRunner(BaseAgentRunner, ABC):
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
)
if iteration_step > 1:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
@@ -125,21 +120,20 @@ class CotAgentRunner(BaseAgentRunner, ABC):
raise ValueError("failed to invoke llm")
usage_dict = {}
react_chunks = CotAgentOutputParser.handle_react_stream_output(
chunks, usage_dict)
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
scratchpad = AgentScratchpadUnit(
agent_response='',
thought='',
action_str='',
observation='',
agent_response="",
thought="",
action_str="",
observation="",
action=None,
)
# publish agent thought if it's first iteration
if iteration_step == 1:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
)
for chunk in react_chunks:
if isinstance(chunk, AgentScratchpadUnit.Action):
@@ -154,61 +148,51 @@ class CotAgentRunner(BaseAgentRunner, ABC):
yield LLMResultChunk(
model=self.model_config.model,
prompt_messages=prompt_messages,
system_fingerprint='',
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=chunk
),
usage=None
)
system_fingerprint="",
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
)
scratchpad.thought = scratchpad.thought.strip(
) or 'I am thinking about how to help you'
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
self._agent_scratchpad.append(scratchpad)
# get llm usage
if 'usage' in usage_dict:
increase_usage(llm_usage, usage_dict['usage'])
if "usage" in usage_dict:
increase_usage(llm_usage, usage_dict["usage"])
else:
usage_dict['usage'] = LLMUsage.empty_usage()
usage_dict["usage"] = LLMUsage.empty_usage()
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name if scratchpad.action else '',
tool_input={
scratchpad.action.action_name: scratchpad.action.action_input
} if scratchpad.action else {},
tool_name=scratchpad.action.action_name if scratchpad.action else "",
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
tool_invoke_meta={},
thought=scratchpad.thought,
observation='',
observation="",
answer=scratchpad.agent_response,
messages_ids=[],
llm_usage=usage_dict['usage']
llm_usage=usage_dict["usage"],
)
if not scratchpad.is_final():
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
)
if not scratchpad.action:
# failed to extract action, return final answer directly
final_answer = ''
final_answer = ""
else:
if scratchpad.action.action_name.lower() == "final answer":
# action is final answer, return final answer directly
try:
if isinstance(scratchpad.action.action_input, dict):
final_answer = json.dumps(
scratchpad.action.action_input)
final_answer = json.dumps(scratchpad.action.action_input)
elif isinstance(scratchpad.action.action_input, str):
final_answer = scratchpad.action.action_input
else:
final_answer = f'{scratchpad.action.action_input}'
final_answer = f"{scratchpad.action.action_input}"
except json.JSONDecodeError:
final_answer = f'{scratchpad.action.action_input}'
final_answer = f"{scratchpad.action.action_input}"
else:
function_call_state = True
# action is tool call, invoke tool
@@ -224,21 +208,18 @@ class CotAgentRunner(BaseAgentRunner, ABC):
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=scratchpad.action.action_name,
tool_input={
scratchpad.action.action_name: scratchpad.action.action_input},
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
thought=scratchpad.thought,
observation={
scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={
scratchpad.action.action_name: tool_invoke_meta.to_dict()},
observation={scratchpad.action.action_name: tool_invoke_response},
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
answer=scratchpad.agent_response,
messages_ids=message_file_ids,
llm_usage=usage_dict['usage']
llm_usage=usage_dict["usage"],
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
)
# update prompt tool message
for prompt_tool in self._prompt_messages_tools:
@@ -250,44 +231,45 @@ class CotAgentRunner(BaseAgentRunner, ABC):
model=model_instance.model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(
content=final_answer
),
usage=llm_usage['usage']
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
),
system_fingerprint=''
system_fingerprint="",
)
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name='',
tool_name="",
tool_input={},
tool_invoke_meta={},
thought=final_answer,
observation={},
answer=final_answer,
messages_ids=[]
messages_ids=[],
)
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer
self.queue_manager.publish(
QueueMessageEndEvent(
llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] if llm_usage["usage"] else LLMUsage.empty_usage(),
system_fingerprint="",
)
),
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
)), PublishFrom.APPLICATION_MANAGER)
PublishFrom.APPLICATION_MANAGER,
)
def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
tool_instances: dict[str, Tool],
message_file_ids: list[str],
trace_manager: Optional[TraceQueueManager] = None
) -> tuple[str, ToolInvokeMeta]:
def _handle_invoke_action(
self,
action: AgentScratchpadUnit.Action,
tool_instances: dict[str, Tool],
message_file_ids: list[str],
trace_manager: Optional[TraceQueueManager] = None,
) -> tuple[str, ToolInvokeMeta]:
"""
handle invoke action
:param action: action
@@ -326,13 +308,12 @@ class CotAgentRunner(BaseAgentRunner, ABC):
# publish files
for message_file_id, save_as in message_files:
if save_as:
self.variables_pool.set_file(
tool_name=tool_call_name, value=message_file_id, name=save_as)
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
# publish message file
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file_id
), PublishFrom.APPLICATION_MANAGER)
self.queue_manager.publish(
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
)
# add message file ids
message_file_ids.append(message_file_id)
@@ -342,10 +323,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
"""
convert dict to action
"""
return AgentScratchpadUnit.Action(
action_name=action['action'],
action_input=action['action_input']
)
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
"""
@@ -353,7 +331,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
"""
for key, value in inputs.items():
try:
instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
except Exception as e:
continue
@@ -370,14 +348,14 @@ class CotAgentRunner(BaseAgentRunner, ABC):
@abstractmethod
def _organize_prompt_messages(self) -> list[PromptMessage]:
"""
organize prompt messages
organize prompt messages
"""
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
"""
format assistant message
format assistant message
"""
message = ''
message = ""
for scratchpad in agent_scratchpad:
if scratchpad.is_final():
message += f"Final Answer: {scratchpad.agent_response}"
@@ -390,9 +368,11 @@ class CotAgentRunner(BaseAgentRunner, ABC):
return message
def _organize_historic_prompt_messages(self, current_session_messages: list[PromptMessage] = None) -> list[PromptMessage]:
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] = None
) -> list[PromptMessage]:
"""
organize historic prompt messages
organize historic prompt messages
"""
result: list[PromptMessage] = []
scratchpads: list[AgentScratchpadUnit] = []
@@ -403,8 +383,8 @@ class CotAgentRunner(BaseAgentRunner, ABC):
if not current_scratchpad:
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content or 'I am thinking about how to help you',
action_str='',
thought=message.content or "I am thinking about how to help you",
action_str="",
action=None,
observation=None,
)
@@ -413,12 +393,9 @@ class CotAgentRunner(BaseAgentRunner, ABC):
try:
current_scratchpad.action = AgentScratchpadUnit.Action(
action_name=message.tool_calls[0].function.name,
action_input=json.loads(
message.tool_calls[0].function.arguments)
)
current_scratchpad.action_str = json.dumps(
current_scratchpad.action.to_dict()
action_input=json.loads(message.tool_calls[0].function.arguments),
)
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
except:
pass
elif isinstance(message, ToolPromptMessage):
@@ -426,23 +403,19 @@ class CotAgentRunner(BaseAgentRunner, ABC):
current_scratchpad.observation = message.content
elif isinstance(message, UserPromptMessage):
if scratchpads:
result.append(AssistantPromptMessage(
content=self._format_assistant_message(scratchpads)
))
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
scratchpads = []
current_scratchpad = None
result.append(message)
if scratchpads:
result.append(AssistantPromptMessage(
content=self._format_assistant_message(scratchpads)
))
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
historic_prompts = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=current_session_messages or [],
history_messages=result,
memory=self.memory
memory=self.memory,
).get_prompt()
return historic_prompts