chore(api/core): apply ruff reformatting (#7624)
This commit is contained in:
@@ -24,11 +24,9 @@ from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
def run(self,
|
||||
message: Message, query: str, **kwargs: Any
|
||||
) -> Generator[LLMResultChunk, None, None]:
|
||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run FunctionCall agent application
|
||||
"""
|
||||
@@ -45,19 +43,17 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = True
|
||||
llm_usage = {
|
||||
'usage': None
|
||||
}
|
||||
final_answer = ''
|
||||
llm_usage = {"usage": None}
|
||||
final_answer = ""
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
|
||||
if not final_llm_usage_dict['usage']:
|
||||
final_llm_usage_dict['usage'] = usage
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict['usage']
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
@@ -75,11 +71,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
message_file_ids = []
|
||||
agent_thought = self.create_agent_thought(
|
||||
message_id=message.id,
|
||||
message='',
|
||||
tool_name='',
|
||||
tool_input='',
|
||||
messages_ids=message_file_ids
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
@@ -99,11 +91,11 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
|
||||
# save full response
|
||||
response = ''
|
||||
response = ""
|
||||
|
||||
# save tool call names and inputs
|
||||
tool_call_names = ''
|
||||
tool_call_inputs = ''
|
||||
tool_call_names = ""
|
||||
tool_call_inputs = ""
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
@@ -111,24 +103,22 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
is_first_chunk = True
|
||||
for chunk in chunks:
|
||||
if is_first_chunk:
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
is_first_chunk = False
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
}, ensure_ascii=False)
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except json.JSONDecodeError as e:
|
||||
# ensure ascii to avoid encoding error
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
@@ -148,16 +138,14 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result))
|
||||
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
}, ensure_ascii=False)
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except json.JSONDecodeError as e:
|
||||
# ensure ascii to avoid encoding error
|
||||
tool_call_inputs = json.dumps({
|
||||
tool_call[1]: tool_call[2] for tool_call in tool_calls
|
||||
})
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
@@ -171,12 +159,12 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
response += result.message.content
|
||||
|
||||
if not result.message.content:
|
||||
result.message.content = ''
|
||||
result.message.content = ""
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
@@ -185,32 +173,29 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
assistant_message = AssistantPromptMessage(
|
||||
content='',
|
||||
tool_calls=[]
|
||||
)
|
||||
assistant_message = AssistantPromptMessage(content="", tool_calls=[])
|
||||
if tool_calls:
|
||||
assistant_message.tool_calls=[
|
||||
assistant_message.tool_calls = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type='function',
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1],
|
||||
arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
)
|
||||
) for tool_call in tool_calls
|
||||
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
),
|
||||
)
|
||||
for tool_call in tool_calls
|
||||
]
|
||||
else:
|
||||
assistant_message.content = response
|
||||
|
||||
|
||||
self._current_thoughts.append(assistant_message)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
agent_thought=agent_thought,
|
||||
tool_name=tool_call_names,
|
||||
tool_input=tool_call_inputs,
|
||||
thought=response,
|
||||
@@ -218,13 +203,13 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
observation=None,
|
||||
answer=response,
|
||||
messages_ids=[],
|
||||
llm_usage=current_llm_usage
|
||||
llm_usage=current_llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
final_answer += response + '\n'
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
final_answer += response + "\n"
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
@@ -235,7 +220,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": f"there is not a tool named {tool_call_name}",
|
||||
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict()
|
||||
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
|
||||
}
|
||||
else:
|
||||
# invoke tool
|
||||
@@ -255,50 +240,49 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
|
||||
|
||||
# publish message file
|
||||
self.queue_manager.publish(QueueMessageFileEvent(
|
||||
message_file_id=message_file_id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": tool_invoke_response,
|
||||
"meta": tool_invoke_meta.to_dict()
|
||||
"meta": tool_invoke_meta.to_dict(),
|
||||
}
|
||||
|
||||
|
||||
tool_responses.append(tool_response)
|
||||
if tool_response['tool_response'] is not None:
|
||||
if tool_response["tool_response"] is not None:
|
||||
self._current_thoughts.append(
|
||||
ToolPromptMessage(
|
||||
content=tool_response['tool_response'],
|
||||
content=tool_response["tool_response"],
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_call_name,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
if len(tool_responses) > 0:
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought=agent_thought,
|
||||
agent_thought=agent_thought,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=None,
|
||||
thought=None,
|
||||
tool_invoke_meta={
|
||||
tool_response['tool_call_name']: tool_response['meta']
|
||||
for tool_response in tool_responses
|
||||
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
|
||||
},
|
||||
observation={
|
||||
tool_response['tool_call_name']: tool_response['tool_response']
|
||||
tool_response["tool_call_name"]: tool_response["tool_response"]
|
||||
for tool_response in tool_responses
|
||||
},
|
||||
answer=None,
|
||||
messages_ids=message_file_ids
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
self.queue_manager.publish(QueueAgentThoughtEvent(
|
||||
agent_thought_id=agent_thought.id
|
||||
), PublishFrom.APPLICATION_MANAGER)
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
@@ -308,15 +292,18 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
|
||||
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
||||
# publish end event
|
||||
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(
|
||||
content=final_answer
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] if llm_usage["usage"] else LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
||||
system_fingerprint=''
|
||||
)), PublishFrom.APPLICATION_MANAGER)
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
||||
"""
|
||||
@@ -325,7 +312,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
@@ -334,7 +321,9 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
|
||||
def extract_tool_calls(
|
||||
self, llm_result_chunk: LLMResultChunk
|
||||
) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
|
||||
"""
|
||||
Extract tool calls from llm result chunk
|
||||
|
||||
@@ -344,17 +333,19 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != '':
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append((
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
))
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
@@ -365,18 +356,22 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != '':
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append((
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
))
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
|
||||
def _init_system_message(
|
||||
self, prompt_template: str, prompt_messages: list[PromptMessage] = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
@@ -384,13 +379,13 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
return [
|
||||
SystemPromptMessage(content=prompt_template),
|
||||
]
|
||||
|
||||
|
||||
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
|
||||
def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
@@ -404,7 +399,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
@@ -415,17 +410,21 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = '\n'.join([
|
||||
content.data if content.type == PromptMessageContentType.TEXT else
|
||||
'[image]' if content.type == PromptMessageContentType.IMAGE else
|
||||
'[file]'
|
||||
for content in prompt_message.content
|
||||
])
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ''
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query, [])
|
||||
|
||||
@@ -433,14 +432,10 @@ class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [
|
||||
*self.history_prompt_messages,
|
||||
*query_prompt_messages,
|
||||
*self._current_thoughts
|
||||
]
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
|
Reference in New Issue
Block a user