chore(api/core): apply ruff reformatting (#7624)
This commit is contained in:
@@ -29,9 +29,13 @@ class CacheEmbedding(Embeddings):
|
||||
embedding_queue_indices = []
|
||||
for i, text in enumerate(texts):
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model,
|
||||
hash=hash,
|
||||
provider_name=self._model_instance.provider).first()
|
||||
embedding = (
|
||||
db.session.query(Embedding)
|
||||
.filter_by(
|
||||
model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
|
||||
)
|
||||
.first()
|
||||
)
|
||||
if embedding:
|
||||
text_embeddings[i] = embedding.get_embedding()
|
||||
else:
|
||||
@@ -41,17 +45,18 @@ class CacheEmbedding(Embeddings):
|
||||
embedding_queue_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(self._model_instance.model,
|
||||
self._model_instance.credentials)
|
||||
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
||||
model_schema = model_type_instance.get_model_schema(
|
||||
self._model_instance.model, self._model_instance.credentials
|
||||
)
|
||||
max_chunks = (
|
||||
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
|
||||
else 1
|
||||
)
|
||||
for i in range(0, len(embedding_queue_texts), max_chunks):
|
||||
batch_texts = embedding_queue_texts[i:i + max_chunks]
|
||||
batch_texts = embedding_queue_texts[i : i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=batch_texts,
|
||||
user=self._user
|
||||
)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(texts=batch_texts, user=self._user)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
@@ -60,16 +65,18 @@ class CacheEmbedding(Embeddings):
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception('Failed transform embedding: ', e)
|
||||
logging.exception("Failed transform embedding: ", e)
|
||||
cache_embeddings = []
|
||||
try:
|
||||
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
text_embeddings[i] = embedding
|
||||
hash = helper.generate_text_hash(texts[i])
|
||||
if hash not in cache_embeddings:
|
||||
embedding_cache = Embedding(model_name=self._model_instance.model,
|
||||
hash=hash,
|
||||
provider_name=self._model_instance.provider)
|
||||
embedding_cache = Embedding(
|
||||
model_name=self._model_instance.model,
|
||||
hash=hash,
|
||||
provider_name=self._model_instance.provider,
|
||||
)
|
||||
embedding_cache.set_embedding(embedding)
|
||||
db.session.add(embedding_cache)
|
||||
cache_embeddings.append(hash)
|
||||
@@ -78,7 +85,7 @@ class CacheEmbedding(Embeddings):
|
||||
db.session.rollback()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.error('Failed to embed documents: ', ex)
|
||||
logger.error("Failed to embed documents: ", ex)
|
||||
raise ex
|
||||
|
||||
return text_embeddings
|
||||
@@ -87,16 +94,13 @@ class CacheEmbedding(Embeddings):
|
||||
"""Embed query text."""
|
||||
# use doc embedding cache or store if not exists
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
||||
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
|
||||
embedding = redis_client.get(embedding_cache_key)
|
||||
if embedding:
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=[text],
|
||||
user=self._user
|
||||
)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(texts=[text], user=self._user)
|
||||
|
||||
embedding_results = embedding_result.embeddings[0]
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
|
||||
@@ -116,6 +120,6 @@ class CacheEmbedding(Embeddings):
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except:
|
||||
logging.exception('Failed to add embedding to redis')
|
||||
logging.exception("Failed to add embedding to redis")
|
||||
|
||||
return embedding_results
|
||||
|
Reference in New Issue
Block a user