chore(api/core): apply ruff reformatting (#7624)
This commit is contained in:
@@ -39,7 +39,6 @@ from services.feature_service import FeatureService
|
||||
|
||||
|
||||
class IndexingRunner:
|
||||
|
||||
def __init__(self):
|
||||
self.storage = storage
|
||||
self.model_manager = ModelManager()
|
||||
@@ -49,25 +48,26 @@ class IndexingRunner:
|
||||
for dataset_document in dataset_documents:
|
||||
try:
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=dataset_document.dataset_id
|
||||
).first()
|
||||
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# get the process rule
|
||||
processing_rule = db.session.query(DatasetProcessRule). \
|
||||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||||
first()
|
||||
processing_rule = (
|
||||
db.session.query(DatasetProcessRule)
|
||||
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
|
||||
.first()
|
||||
)
|
||||
index_type = dataset_document.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
# extract
|
||||
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
|
||||
|
||||
# transform
|
||||
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
|
||||
processing_rule.to_dict())
|
||||
documents = self._transform(
|
||||
index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
|
||||
)
|
||||
# save segment
|
||||
self._load_segments(dataset, dataset_document, documents)
|
||||
|
||||
@@ -76,20 +76,20 @@ class IndexingRunner:
|
||||
index_processor=index_processor,
|
||||
dataset=dataset,
|
||||
dataset_document=dataset_document,
|
||||
documents=documents
|
||||
documents=documents,
|
||||
)
|
||||
except DocumentIsPausedException:
|
||||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||||
raise DocumentIsPausedException("Document paused, document id: {}".format(dataset_document.id))
|
||||
except ProviderTokenNotInitError as e:
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.indexing_status = "error"
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
except ObjectDeletedError:
|
||||
logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
|
||||
logging.warning("Document deleted, document id: {}".format(dataset_document.id))
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.indexing_status = "error"
|
||||
dataset_document.error = str(e)
|
||||
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
@@ -98,26 +98,25 @@ class IndexingRunner:
|
||||
"""Run the indexing process when the index_status is splitting."""
|
||||
try:
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=dataset_document.dataset_id
|
||||
).first()
|
||||
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# get exist document_segment list and delete
|
||||
document_segments = DocumentSegment.query.filter_by(
|
||||
dataset_id=dataset.id,
|
||||
document_id=dataset_document.id
|
||||
dataset_id=dataset.id, document_id=dataset_document.id
|
||||
).all()
|
||||
|
||||
for document_segment in document_segments:
|
||||
db.session.delete(document_segment)
|
||||
db.session.commit()
|
||||
# get the process rule
|
||||
processing_rule = db.session.query(DatasetProcessRule). \
|
||||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||||
first()
|
||||
processing_rule = (
|
||||
db.session.query(DatasetProcessRule)
|
||||
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
|
||||
.first()
|
||||
)
|
||||
|
||||
index_type = dataset_document.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
@@ -125,28 +124,26 @@ class IndexingRunner:
|
||||
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
|
||||
|
||||
# transform
|
||||
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
|
||||
processing_rule.to_dict())
|
||||
documents = self._transform(
|
||||
index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
|
||||
)
|
||||
# save segment
|
||||
self._load_segments(dataset, dataset_document, documents)
|
||||
|
||||
# load
|
||||
self._load(
|
||||
index_processor=index_processor,
|
||||
dataset=dataset,
|
||||
dataset_document=dataset_document,
|
||||
documents=documents
|
||||
index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
|
||||
)
|
||||
except DocumentIsPausedException:
|
||||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||||
raise DocumentIsPausedException("Document paused, document id: {}".format(dataset_document.id))
|
||||
except ProviderTokenNotInitError as e:
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.indexing_status = "error"
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.indexing_status = "error"
|
||||
dataset_document.error = str(e)
|
||||
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
@@ -155,17 +152,14 @@ class IndexingRunner:
|
||||
"""Run the indexing process when the index_status is indexing."""
|
||||
try:
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=dataset_document.dataset_id
|
||||
).first()
|
||||
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# get exist document_segment list and delete
|
||||
document_segments = DocumentSegment.query.filter_by(
|
||||
dataset_id=dataset.id,
|
||||
document_id=dataset_document.id
|
||||
dataset_id=dataset.id, document_id=dataset_document.id
|
||||
).all()
|
||||
|
||||
documents = []
|
||||
@@ -180,42 +174,48 @@ class IndexingRunner:
|
||||
"doc_hash": document_segment.index_node_hash,
|
||||
"document_id": document_segment.document_id,
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
documents.append(document)
|
||||
|
||||
# build index
|
||||
# get the process rule
|
||||
processing_rule = db.session.query(DatasetProcessRule). \
|
||||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||||
first()
|
||||
processing_rule = (
|
||||
db.session.query(DatasetProcessRule)
|
||||
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
|
||||
.first()
|
||||
)
|
||||
|
||||
index_type = dataset_document.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
self._load(
|
||||
index_processor=index_processor,
|
||||
dataset=dataset,
|
||||
dataset_document=dataset_document,
|
||||
documents=documents
|
||||
index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
|
||||
)
|
||||
except DocumentIsPausedException:
|
||||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||||
raise DocumentIsPausedException("Document paused, document id: {}".format(dataset_document.id))
|
||||
except ProviderTokenNotInitError as e:
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.indexing_status = "error"
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.indexing_status = "error"
|
||||
dataset_document.error = str(e)
|
||||
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
db.session.commit()
|
||||
|
||||
def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
|
||||
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
|
||||
indexing_technique: str = 'economy') -> dict:
|
||||
def indexing_estimate(
|
||||
self,
|
||||
tenant_id: str,
|
||||
extract_settings: list[ExtractSetting],
|
||||
tmp_processing_rule: dict,
|
||||
doc_form: str = None,
|
||||
doc_language: str = "English",
|
||||
dataset_id: str = None,
|
||||
indexing_technique: str = "economy",
|
||||
) -> dict:
|
||||
"""
|
||||
Estimate the indexing for the document.
|
||||
"""
|
||||
@@ -229,18 +229,16 @@ class IndexingRunner:
|
||||
|
||||
embedding_model_instance = None
|
||||
if dataset_id:
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=dataset_id
|
||||
).first()
|
||||
dataset = Dataset.query.filter_by(id=dataset_id).first()
|
||||
if not dataset:
|
||||
raise ValueError('Dataset not found.')
|
||||
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
|
||||
raise ValueError("Dataset not found.")
|
||||
if dataset.indexing_technique == "high_quality" or indexing_technique == "high_quality":
|
||||
if dataset.embedding_model_provider:
|
||||
embedding_model_instance = self.model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
else:
|
||||
embedding_model_instance = self.model_manager.get_default_model_instance(
|
||||
@@ -248,7 +246,7 @@ class IndexingRunner:
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
else:
|
||||
if indexing_technique == 'high_quality':
|
||||
if indexing_technique == "high_quality":
|
||||
embedding_model_instance = self.model_manager.get_default_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
@@ -263,8 +261,7 @@ class IndexingRunner:
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
all_text_docs.extend(text_docs)
|
||||
processing_rule = DatasetProcessRule(
|
||||
mode=tmp_processing_rule["mode"],
|
||||
rules=json.dumps(tmp_processing_rule["rules"])
|
||||
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
|
||||
)
|
||||
|
||||
# get splitter
|
||||
@@ -272,9 +269,7 @@ class IndexingRunner:
|
||||
|
||||
# split to documents
|
||||
documents = self._split_to_documents_for_estimate(
|
||||
text_docs=text_docs,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
text_docs=text_docs, splitter=splitter, processing_rule=processing_rule
|
||||
)
|
||||
|
||||
total_segments += len(documents)
|
||||
@@ -282,110 +277,110 @@ class IndexingRunner:
|
||||
if len(preview_texts) < 5:
|
||||
preview_texts.append(document.page_content)
|
||||
|
||||
if doc_form and doc_form == 'qa_model':
|
||||
|
||||
if doc_form and doc_form == "qa_model":
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
|
||||
doc_language)
|
||||
response = LLMGenerator.generate_qa_document(
|
||||
current_user.current_tenant_id, preview_texts[0], doc_language
|
||||
)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
|
||||
return {
|
||||
"total_segments": total_segments * 20,
|
||||
"qa_preview": document_qa_list,
|
||||
"preview": preview_texts
|
||||
}
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
"preview": preview_texts
|
||||
}
|
||||
return {"total_segments": total_segments * 20, "qa_preview": document_qa_list, "preview": preview_texts}
|
||||
return {"total_segments": total_segments, "preview": preview_texts}
|
||||
|
||||
def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
|
||||
-> list[Document]:
|
||||
def _extract(
|
||||
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
|
||||
) -> list[Document]:
|
||||
# load file
|
||||
if dataset_document.data_source_type not in ["upload_file", "notion_import", "website_crawl"]:
|
||||
return []
|
||||
|
||||
data_source_info = dataset_document.data_source_info_dict
|
||||
text_docs = []
|
||||
if dataset_document.data_source_type == 'upload_file':
|
||||
if not data_source_info or 'upload_file_id' not in data_source_info:
|
||||
if dataset_document.data_source_type == "upload_file":
|
||||
if not data_source_info or "upload_file_id" not in data_source_info:
|
||||
raise ValueError("no upload file found")
|
||||
|
||||
file_detail = db.session.query(UploadFile). \
|
||||
filter(UploadFile.id == data_source_info['upload_file_id']). \
|
||||
one_or_none()
|
||||
file_detail = (
|
||||
db.session.query(UploadFile).filter(UploadFile.id == data_source_info["upload_file_id"]).one_or_none()
|
||||
)
|
||||
|
||||
if file_detail:
|
||||
extract_setting = ExtractSetting(
|
||||
datasource_type="upload_file",
|
||||
upload_file=file_detail,
|
||||
document_model=dataset_document.doc_form
|
||||
datasource_type="upload_file", upload_file=file_detail, document_model=dataset_document.doc_form
|
||||
)
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
|
||||
elif dataset_document.data_source_type == 'notion_import':
|
||||
if (not data_source_info or 'notion_workspace_id' not in data_source_info
|
||||
or 'notion_page_id' not in data_source_info):
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
|
||||
elif dataset_document.data_source_type == "notion_import":
|
||||
if (
|
||||
not data_source_info
|
||||
or "notion_workspace_id" not in data_source_info
|
||||
or "notion_page_id" not in data_source_info
|
||||
):
|
||||
raise ValueError("no notion import info found")
|
||||
extract_setting = ExtractSetting(
|
||||
datasource_type="notion_import",
|
||||
notion_info={
|
||||
"notion_workspace_id": data_source_info['notion_workspace_id'],
|
||||
"notion_obj_id": data_source_info['notion_page_id'],
|
||||
"notion_page_type": data_source_info['type'],
|
||||
"notion_workspace_id": data_source_info["notion_workspace_id"],
|
||||
"notion_obj_id": data_source_info["notion_page_id"],
|
||||
"notion_page_type": data_source_info["type"],
|
||||
"document": dataset_document,
|
||||
"tenant_id": dataset_document.tenant_id
|
||||
"tenant_id": dataset_document.tenant_id,
|
||||
},
|
||||
document_model=dataset_document.doc_form
|
||||
document_model=dataset_document.doc_form,
|
||||
)
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
|
||||
elif dataset_document.data_source_type == 'website_crawl':
|
||||
if (not data_source_info or 'provider' not in data_source_info
|
||||
or 'url' not in data_source_info or 'job_id' not in data_source_info):
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
|
||||
elif dataset_document.data_source_type == "website_crawl":
|
||||
if (
|
||||
not data_source_info
|
||||
or "provider" not in data_source_info
|
||||
or "url" not in data_source_info
|
||||
or "job_id" not in data_source_info
|
||||
):
|
||||
raise ValueError("no website import info found")
|
||||
extract_setting = ExtractSetting(
|
||||
datasource_type="website_crawl",
|
||||
website_info={
|
||||
"provider": data_source_info['provider'],
|
||||
"job_id": data_source_info['job_id'],
|
||||
"provider": data_source_info["provider"],
|
||||
"job_id": data_source_info["job_id"],
|
||||
"tenant_id": dataset_document.tenant_id,
|
||||
"url": data_source_info['url'],
|
||||
"mode": data_source_info['mode'],
|
||||
"only_main_content": data_source_info['only_main_content']
|
||||
"url": data_source_info["url"],
|
||||
"mode": data_source_info["mode"],
|
||||
"only_main_content": data_source_info["only_main_content"],
|
||||
},
|
||||
document_model=dataset_document.doc_form
|
||||
document_model=dataset_document.doc_form,
|
||||
)
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
|
||||
# update document status to splitting
|
||||
self._update_document_index_status(
|
||||
document_id=dataset_document.id,
|
||||
after_indexing_status="splitting",
|
||||
extra_update_params={
|
||||
DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
|
||||
DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
}
|
||||
DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
},
|
||||
)
|
||||
|
||||
# replace doc id to document model id
|
||||
text_docs = cast(list[Document], text_docs)
|
||||
for text_doc in text_docs:
|
||||
text_doc.metadata['document_id'] = dataset_document.id
|
||||
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
|
||||
text_doc.metadata["document_id"] = dataset_document.id
|
||||
text_doc.metadata["dataset_id"] = dataset_document.dataset_id
|
||||
|
||||
return text_docs
|
||||
|
||||
@staticmethod
|
||||
def filter_string(text):
|
||||
text = re.sub(r'<\|', '<', text)
|
||||
text = re.sub(r'\|>', '>', text)
|
||||
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
|
||||
text = re.sub(r"<\|", "<", text)
|
||||
text = re.sub(r"\|>", ">", text)
|
||||
text = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]", "", text)
|
||||
# Unicode U+FFFE
|
||||
text = re.sub('\uFFFE', '', text)
|
||||
text = re.sub("\ufffe", "", text)
|
||||
return text
|
||||
|
||||
@staticmethod
|
||||
def _get_splitter(processing_rule: DatasetProcessRule,
|
||||
embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
|
||||
def _get_splitter(
|
||||
processing_rule: DatasetProcessRule, embedding_model_instance: Optional[ModelInstance]
|
||||
) -> TextSplitter:
|
||||
"""
|
||||
Get the NodeParser object according to the processing rule.
|
||||
"""
|
||||
@@ -399,10 +394,10 @@ class IndexingRunner:
|
||||
|
||||
separator = segmentation["separator"]
|
||||
if separator:
|
||||
separator = separator.replace('\\n', '\n')
|
||||
separator = separator.replace("\\n", "\n")
|
||||
|
||||
if segmentation.get('chunk_overlap'):
|
||||
chunk_overlap = segmentation['chunk_overlap']
|
||||
if segmentation.get("chunk_overlap"):
|
||||
chunk_overlap = segmentation["chunk_overlap"]
|
||||
else:
|
||||
chunk_overlap = 0
|
||||
|
||||
@@ -411,22 +406,27 @@ class IndexingRunner:
|
||||
chunk_overlap=chunk_overlap,
|
||||
fixed_separator=separator,
|
||||
separators=["\n\n", "。", ". ", " ", ""],
|
||||
embedding_model_instance=embedding_model_instance
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
)
|
||||
else:
|
||||
# Automatic segmentation
|
||||
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
|
||||
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
|
||||
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
|
||||
chunk_size=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["max_tokens"],
|
||||
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["chunk_overlap"],
|
||||
separators=["\n\n", "。", ". ", " ", ""],
|
||||
embedding_model_instance=embedding_model_instance
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
)
|
||||
|
||||
return character_splitter
|
||||
|
||||
def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
|
||||
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
|
||||
-> list[Document]:
|
||||
def _step_split(
|
||||
self,
|
||||
text_docs: list[Document],
|
||||
splitter: TextSplitter,
|
||||
dataset: Dataset,
|
||||
dataset_document: DatasetDocument,
|
||||
processing_rule: DatasetProcessRule,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into documents and save them to the document segment.
|
||||
"""
|
||||
@@ -436,14 +436,12 @@ class IndexingRunner:
|
||||
processing_rule=processing_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
document_form=dataset_document.doc_form,
|
||||
document_language=dataset_document.doc_language
|
||||
document_language=dataset_document.doc_language,
|
||||
)
|
||||
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(
|
||||
dataset=dataset,
|
||||
user_id=dataset_document.created_by,
|
||||
document_id=dataset_document.id
|
||||
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
@@ -457,7 +455,7 @@ class IndexingRunner:
|
||||
extra_update_params={
|
||||
DatasetDocument.cleaning_completed_at: cur_time,
|
||||
DatasetDocument.splitting_completed_at: cur_time,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# update segment status to indexing
|
||||
@@ -465,15 +463,21 @@ class IndexingRunner:
|
||||
dataset_document_id=dataset_document.id,
|
||||
update_params={
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
}
|
||||
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
},
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule, tenant_id: str,
|
||||
document_form: str, document_language: str) -> list[Document]:
|
||||
def _split_to_documents(
|
||||
self,
|
||||
text_docs: list[Document],
|
||||
splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule,
|
||||
tenant_id: str,
|
||||
document_form: str,
|
||||
document_language: str,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
@@ -488,12 +492,11 @@ class IndexingRunner:
|
||||
documents = splitter.split_documents([text_doc])
|
||||
split_documents = []
|
||||
for document_node in documents:
|
||||
|
||||
if document_node.page_content.strip():
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata['doc_id'] = doc_id
|
||||
document_node.metadata['doc_hash'] = hash
|
||||
document_node.metadata["doc_id"] = doc_id
|
||||
document_node.metadata["doc_hash"] = hash
|
||||
# delete Splitter character
|
||||
page_content = document_node.page_content
|
||||
if page_content.startswith(".") or page_content.startswith("。"):
|
||||
@@ -506,15 +509,21 @@ class IndexingRunner:
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
# processing qa document
|
||||
if document_form == 'qa_model':
|
||||
if document_form == "qa_model":
|
||||
for i in range(0, len(all_documents), 10):
|
||||
threads = []
|
||||
sub_documents = all_documents[i:i + 10]
|
||||
sub_documents = all_documents[i : i + 10]
|
||||
for doc in sub_documents:
|
||||
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
|
||||
'document_language': document_language})
|
||||
document_format_thread = threading.Thread(
|
||||
target=self.format_qa_document,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(),
|
||||
"tenant_id": tenant_id,
|
||||
"document_node": doc,
|
||||
"all_qa_documents": all_qa_documents,
|
||||
"document_language": document_language,
|
||||
},
|
||||
)
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
@@ -533,12 +542,14 @@ class IndexingRunner:
|
||||
document_qa_list = self.format_split_text(response)
|
||||
qa_documents = []
|
||||
for result in document_qa_list:
|
||||
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.model_copy())
|
||||
qa_document = Document(
|
||||
page_content=result["question"], metadata=document_node.metadata.model_copy()
|
||||
)
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(result['question'])
|
||||
qa_document.metadata['answer'] = result['answer']
|
||||
qa_document.metadata['doc_id'] = doc_id
|
||||
qa_document.metadata['doc_hash'] = hash
|
||||
hash = helper.generate_text_hash(result["question"])
|
||||
qa_document.metadata["answer"] = result["answer"]
|
||||
qa_document.metadata["doc_id"] = doc_id
|
||||
qa_document.metadata["doc_hash"] = hash
|
||||
qa_documents.append(qa_document)
|
||||
format_documents.extend(qa_documents)
|
||||
except Exception as e:
|
||||
@@ -546,8 +557,9 @@ class IndexingRunner:
|
||||
|
||||
all_qa_documents.extend(format_documents)
|
||||
|
||||
def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule) -> list[Document]:
|
||||
def _split_to_documents_for_estimate(
|
||||
self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
@@ -567,8 +579,8 @@ class IndexingRunner:
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document.page_content)
|
||||
|
||||
document.metadata['doc_id'] = doc_id
|
||||
document.metadata['doc_hash'] = hash
|
||||
document.metadata["doc_id"] = doc_id
|
||||
document.metadata["doc_hash"] = hash
|
||||
|
||||
split_documents.append(document)
|
||||
|
||||
@@ -586,23 +598,23 @@ class IndexingRunner:
|
||||
else:
|
||||
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
|
||||
|
||||
if 'pre_processing_rules' in rules:
|
||||
if "pre_processing_rules" in rules:
|
||||
pre_processing_rules = rules["pre_processing_rules"]
|
||||
for pre_processing_rule in pre_processing_rules:
|
||||
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
|
||||
# Remove extra spaces
|
||||
pattern = r'\n{3,}'
|
||||
text = re.sub(pattern, '\n\n', text)
|
||||
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
|
||||
text = re.sub(pattern, ' ', text)
|
||||
pattern = r"\n{3,}"
|
||||
text = re.sub(pattern, "\n\n", text)
|
||||
pattern = r"[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}"
|
||||
text = re.sub(pattern, " ", text)
|
||||
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
|
||||
# Remove email
|
||||
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
|
||||
text = re.sub(pattern, '', text)
|
||||
pattern = r"([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)"
|
||||
text = re.sub(pattern, "", text)
|
||||
|
||||
# Remove URL
|
||||
pattern = r'https?://[^\s]+'
|
||||
text = re.sub(pattern, '', text)
|
||||
pattern = r"https?://[^\s]+"
|
||||
text = re.sub(pattern, "", text)
|
||||
|
||||
return text
|
||||
|
||||
@@ -611,27 +623,26 @@ class IndexingRunner:
|
||||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
|
||||
matches = re.findall(regex, text, re.UNICODE)
|
||||
|
||||
return [
|
||||
{
|
||||
"question": q,
|
||||
"answer": re.sub(r"\n\s*", "\n", a.strip())
|
||||
}
|
||||
for q, a in matches if q and a
|
||||
]
|
||||
return [{"question": q, "answer": re.sub(r"\n\s*", "\n", a.strip())} for q, a in matches if q and a]
|
||||
|
||||
def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
|
||||
dataset_document: DatasetDocument, documents: list[Document]) -> None:
|
||||
def _load(
|
||||
self,
|
||||
index_processor: BaseIndexProcessor,
|
||||
dataset: Dataset,
|
||||
dataset_document: DatasetDocument,
|
||||
documents: list[Document],
|
||||
) -> None:
|
||||
"""
|
||||
insert index and update document/segment status to completed
|
||||
"""
|
||||
|
||||
embedding_model_instance = None
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
embedding_model_instance = self.model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
|
||||
# chunk nodes by chunk size
|
||||
@@ -640,18 +651,27 @@ class IndexingRunner:
|
||||
chunk_size = 10
|
||||
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(target=self._process_keyword_index,
|
||||
args=(current_app._get_current_object(),
|
||||
dataset.id, dataset_document.id, documents))
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents),
|
||||
)
|
||||
create_keyword_thread.start()
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = []
|
||||
for i in range(0, len(documents), chunk_size):
|
||||
chunk_documents = documents[i:i + chunk_size]
|
||||
futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
|
||||
chunk_documents, dataset,
|
||||
dataset_document, embedding_model_instance))
|
||||
chunk_documents = documents[i : i + chunk_size]
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self._process_chunk,
|
||||
current_app._get_current_object(),
|
||||
index_processor,
|
||||
chunk_documents,
|
||||
dataset,
|
||||
dataset_document,
|
||||
embedding_model_instance,
|
||||
)
|
||||
)
|
||||
|
||||
for future in futures:
|
||||
tokens += future.result()
|
||||
@@ -668,7 +688,7 @@ class IndexingRunner:
|
||||
DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
|
||||
DatasetDocument.error: None,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@@ -679,23 +699,26 @@ class IndexingRunner:
|
||||
raise ValueError("no dataset found")
|
||||
keyword = Keyword(dataset)
|
||||
keyword.create(documents)
|
||||
if dataset.indexing_technique != 'high_quality':
|
||||
document_ids = [document.metadata['doc_id'] for document in documents]
|
||||
if dataset.indexing_technique != "high_quality":
|
||||
document_ids = [document.metadata["doc_id"] for document in documents]
|
||||
db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.document_id == document_id,
|
||||
DocumentSegment.dataset_id == dataset_id,
|
||||
DocumentSegment.index_node_id.in_(document_ids),
|
||||
DocumentSegment.status == "indexing"
|
||||
).update({
|
||||
DocumentSegment.status: "completed",
|
||||
DocumentSegment.enabled: True,
|
||||
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
})
|
||||
DocumentSegment.status == "indexing",
|
||||
).update(
|
||||
{
|
||||
DocumentSegment.status: "completed",
|
||||
DocumentSegment.enabled: True,
|
||||
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
}
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
|
||||
embedding_model_instance):
|
||||
def _process_chunk(
|
||||
self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
|
||||
):
|
||||
with flask_app.app_context():
|
||||
# check document is paused
|
||||
self._check_document_paused_status(dataset_document.id)
|
||||
@@ -703,26 +726,26 @@ class IndexingRunner:
|
||||
tokens = 0
|
||||
if embedding_model_instance:
|
||||
tokens += sum(
|
||||
embedding_model_instance.get_text_embedding_num_tokens(
|
||||
[document.page_content]
|
||||
)
|
||||
embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
|
||||
for document in chunk_documents
|
||||
)
|
||||
|
||||
# load index
|
||||
index_processor.load(dataset, chunk_documents, with_keywords=False)
|
||||
|
||||
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
|
||||
document_ids = [document.metadata["doc_id"] for document in chunk_documents]
|
||||
db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.document_id == dataset_document.id,
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
DocumentSegment.index_node_id.in_(document_ids),
|
||||
DocumentSegment.status == "indexing"
|
||||
).update({
|
||||
DocumentSegment.status: "completed",
|
||||
DocumentSegment.enabled: True,
|
||||
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
})
|
||||
DocumentSegment.status == "indexing",
|
||||
).update(
|
||||
{
|
||||
DocumentSegment.status: "completed",
|
||||
DocumentSegment.enabled: True,
|
||||
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
}
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
@@ -730,14 +753,15 @@ class IndexingRunner:
|
||||
|
||||
@staticmethod
|
||||
def _check_document_paused_status(document_id: str):
|
||||
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
|
||||
indexing_cache_key = "document_{}_is_paused".format(document_id)
|
||||
result = redis_client.get(indexing_cache_key)
|
||||
if result:
|
||||
raise DocumentIsPausedException()
|
||||
|
||||
@staticmethod
|
||||
def _update_document_index_status(document_id: str, after_indexing_status: str,
|
||||
extra_update_params: Optional[dict] = None) -> None:
|
||||
def _update_document_index_status(
|
||||
document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None
|
||||
) -> None:
|
||||
"""
|
||||
Update the document indexing status.
|
||||
"""
|
||||
@@ -748,9 +772,7 @@ class IndexingRunner:
|
||||
if not document:
|
||||
raise DocumentIsDeletedPausedException()
|
||||
|
||||
update_params = {
|
||||
DatasetDocument.indexing_status: after_indexing_status
|
||||
}
|
||||
update_params = {DatasetDocument.indexing_status: after_indexing_status}
|
||||
|
||||
if extra_update_params:
|
||||
update_params.update(extra_update_params)
|
||||
@@ -780,7 +802,7 @@ class IndexingRunner:
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
}
|
||||
},
|
||||
)
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
@@ -788,17 +810,23 @@ class IndexingRunner:
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
index_processor.load(dataset, documents)
|
||||
|
||||
def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
|
||||
text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
|
||||
def _transform(
|
||||
self,
|
||||
index_processor: BaseIndexProcessor,
|
||||
dataset: Dataset,
|
||||
text_docs: list[Document],
|
||||
doc_language: str,
|
||||
process_rule: dict,
|
||||
) -> list[Document]:
|
||||
# get embedding model instance
|
||||
embedding_model_instance = None
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
if dataset.embedding_model_provider:
|
||||
embedding_model_instance = self.model_manager.get_model_instance(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=dataset.embedding_model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=dataset.embedding_model
|
||||
model=dataset.embedding_model,
|
||||
)
|
||||
else:
|
||||
embedding_model_instance = self.model_manager.get_default_model_instance(
|
||||
@@ -806,18 +834,20 @@ class IndexingRunner:
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
|
||||
documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
|
||||
process_rule=process_rule, tenant_id=dataset.tenant_id,
|
||||
doc_language=doc_language)
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=process_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
doc_language=doc_language,
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
def _load_segments(self, dataset, dataset_document, documents):
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(
|
||||
dataset=dataset,
|
||||
user_id=dataset_document.created_by,
|
||||
document_id=dataset_document.id
|
||||
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
@@ -831,7 +861,7 @@ class IndexingRunner:
|
||||
extra_update_params={
|
||||
DatasetDocument.cleaning_completed_at: cur_time,
|
||||
DatasetDocument.splitting_completed_at: cur_time,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# update segment status to indexing
|
||||
@@ -839,8 +869,8 @@ class IndexingRunner:
|
||||
dataset_document_id=dataset_document.id,
|
||||
update_params={
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
|
||||
}
|
||||
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
|
||||
},
|
||||
)
|
||||
pass
|
||||
|
||||
|
Reference in New Issue
Block a user