chore(api/core): apply ruff reformatting (#7624)
This commit is contained in:
@@ -18,12 +18,21 @@ class Callback:
|
||||
Base class for callbacks.
|
||||
Only for LLM.
|
||||
"""
|
||||
|
||||
raise_error: bool = False
|
||||
|
||||
def on_before_invoke(self, llm_instance: AIModel, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) -> None:
|
||||
def on_before_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Before invoke callback
|
||||
|
||||
@@ -39,10 +48,19 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def on_new_chunk(self, llm_instance: AIModel, chunk: LLMResultChunk, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None):
|
||||
def on_new_chunk(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
chunk: LLMResultChunk,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
On new chunk callback
|
||||
|
||||
@@ -59,10 +77,19 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def on_after_invoke(self, llm_instance: AIModel, result: LLMResult, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) -> None:
|
||||
def on_after_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
result: LLMResult,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
After invoke callback
|
||||
|
||||
@@ -79,10 +106,19 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def on_invoke_error(self, llm_instance: AIModel, ex: Exception, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) -> None:
|
||||
def on_invoke_error(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
ex: Exception,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Invoke error callback
|
||||
|
||||
@@ -99,9 +135,7 @@ class Callback:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def print_text(
|
||||
self, text: str, color: Optional[str] = None, end: str = ""
|
||||
) -> None:
|
||||
def print_text(self, text: str, color: Optional[str] = None, end: str = "") -> None:
|
||||
"""Print text with highlighting and no end characters."""
|
||||
text_to_print = self._get_colored_text(text, color) if color else text
|
||||
print(text_to_print, end=end)
|
||||
|
@@ -10,11 +10,20 @@ from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LoggingCallback(Callback):
|
||||
def on_before_invoke(self, llm_instance: AIModel, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) -> None:
|
||||
def on_before_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Before invoke callback
|
||||
|
||||
@@ -28,40 +37,49 @@ class LoggingCallback(Callback):
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
"""
|
||||
self.print_text("\n[on_llm_before_invoke]\n", color='blue')
|
||||
self.print_text(f"Model: {model}\n", color='blue')
|
||||
self.print_text("Parameters:\n", color='blue')
|
||||
self.print_text("\n[on_llm_before_invoke]\n", color="blue")
|
||||
self.print_text(f"Model: {model}\n", color="blue")
|
||||
self.print_text("Parameters:\n", color="blue")
|
||||
for key, value in model_parameters.items():
|
||||
self.print_text(f"\t{key}: {value}\n", color='blue')
|
||||
self.print_text(f"\t{key}: {value}\n", color="blue")
|
||||
|
||||
if stop:
|
||||
self.print_text(f"\tstop: {stop}\n", color='blue')
|
||||
self.print_text(f"\tstop: {stop}\n", color="blue")
|
||||
|
||||
if tools:
|
||||
self.print_text("\tTools:\n", color='blue')
|
||||
self.print_text("\tTools:\n", color="blue")
|
||||
for tool in tools:
|
||||
self.print_text(f"\t\t{tool.name}\n", color='blue')
|
||||
self.print_text(f"\t\t{tool.name}\n", color="blue")
|
||||
|
||||
self.print_text(f"Stream: {stream}\n", color='blue')
|
||||
self.print_text(f"Stream: {stream}\n", color="blue")
|
||||
|
||||
if user:
|
||||
self.print_text(f"User: {user}\n", color='blue')
|
||||
self.print_text(f"User: {user}\n", color="blue")
|
||||
|
||||
self.print_text("Prompt messages:\n", color='blue')
|
||||
self.print_text("Prompt messages:\n", color="blue")
|
||||
for prompt_message in prompt_messages:
|
||||
if prompt_message.name:
|
||||
self.print_text(f"\tname: {prompt_message.name}\n", color='blue')
|
||||
self.print_text(f"\tname: {prompt_message.name}\n", color="blue")
|
||||
|
||||
self.print_text(f"\trole: {prompt_message.role.value}\n", color='blue')
|
||||
self.print_text(f"\tcontent: {prompt_message.content}\n", color='blue')
|
||||
self.print_text(f"\trole: {prompt_message.role.value}\n", color="blue")
|
||||
self.print_text(f"\tcontent: {prompt_message.content}\n", color="blue")
|
||||
|
||||
if stream:
|
||||
self.print_text("\n[on_llm_new_chunk]")
|
||||
|
||||
def on_new_chunk(self, llm_instance: AIModel, chunk: LLMResultChunk, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None):
|
||||
def on_new_chunk(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
chunk: LLMResultChunk,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
On new chunk callback
|
||||
|
||||
@@ -79,10 +97,19 @@ class LoggingCallback(Callback):
|
||||
sys.stdout.write(chunk.delta.message.content)
|
||||
sys.stdout.flush()
|
||||
|
||||
def on_after_invoke(self, llm_instance: AIModel, result: LLMResult, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) -> None:
|
||||
def on_after_invoke(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
result: LLMResult,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
After invoke callback
|
||||
|
||||
@@ -97,24 +124,33 @@ class LoggingCallback(Callback):
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
"""
|
||||
self.print_text("\n[on_llm_after_invoke]\n", color='yellow')
|
||||
self.print_text(f"Content: {result.message.content}\n", color='yellow')
|
||||
self.print_text("\n[on_llm_after_invoke]\n", color="yellow")
|
||||
self.print_text(f"Content: {result.message.content}\n", color="yellow")
|
||||
|
||||
if result.message.tool_calls:
|
||||
self.print_text("Tool calls:\n", color='yellow')
|
||||
self.print_text("Tool calls:\n", color="yellow")
|
||||
for tool_call in result.message.tool_calls:
|
||||
self.print_text(f"\t{tool_call.id}\n", color='yellow')
|
||||
self.print_text(f"\t{tool_call.function.name}\n", color='yellow')
|
||||
self.print_text(f"\t{json.dumps(tool_call.function.arguments)}\n", color='yellow')
|
||||
self.print_text(f"\t{tool_call.id}\n", color="yellow")
|
||||
self.print_text(f"\t{tool_call.function.name}\n", color="yellow")
|
||||
self.print_text(f"\t{json.dumps(tool_call.function.arguments)}\n", color="yellow")
|
||||
|
||||
self.print_text(f"Model: {result.model}\n", color='yellow')
|
||||
self.print_text(f"Usage: {result.usage}\n", color='yellow')
|
||||
self.print_text(f"System Fingerprint: {result.system_fingerprint}\n", color='yellow')
|
||||
self.print_text(f"Model: {result.model}\n", color="yellow")
|
||||
self.print_text(f"Usage: {result.usage}\n", color="yellow")
|
||||
self.print_text(f"System Fingerprint: {result.system_fingerprint}\n", color="yellow")
|
||||
|
||||
def on_invoke_error(self, llm_instance: AIModel, ex: Exception, model: str, credentials: dict,
|
||||
prompt_messages: list[PromptMessage], model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
||||
stream: bool = True, user: Optional[str] = None) -> None:
|
||||
def on_invoke_error(
|
||||
self,
|
||||
llm_instance: AIModel,
|
||||
ex: Exception,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
stop: Optional[list[str]] = None,
|
||||
stream: bool = True,
|
||||
user: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Invoke error callback
|
||||
|
||||
@@ -129,5 +165,5 @@ class LoggingCallback(Callback):
|
||||
:param stream: is stream response
|
||||
:param user: unique user id
|
||||
"""
|
||||
self.print_text("\n[on_llm_invoke_error]\n", color='red')
|
||||
self.print_text("\n[on_llm_invoke_error]\n", color="red")
|
||||
logger.exception(ex)
|
||||
|
Reference in New Issue
Block a user