chore(api/core): apply ruff reformatting (#7624)
This commit is contained in:
@@ -12,73 +12,83 @@ from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
|
||||
default_retrieval_model = {
|
||||
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
'reranking_enable': False,
|
||||
'reranking_model': {
|
||||
'reranking_provider_name': '',
|
||||
'reranking_model_name': ''
|
||||
},
|
||||
'top_k': 2,
|
||||
'score_threshold_enabled': False
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
"reranking_enable": False,
|
||||
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
|
||||
"top_k": 2,
|
||||
"score_threshold_enabled": False,
|
||||
}
|
||||
|
||||
|
||||
class RetrievalService:
|
||||
|
||||
@classmethod
|
||||
def retrieve(cls, retrieval_method: str, dataset_id: str, query: str,
|
||||
top_k: int, score_threshold: Optional[float] = .0,
|
||||
reranking_model: Optional[dict] = None, reranking_mode: Optional[str] = 'reranking_model',
|
||||
weights: Optional[dict] = None):
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
def retrieve(
|
||||
cls,
|
||||
retrieval_method: str,
|
||||
dataset_id: str,
|
||||
query: str,
|
||||
top_k: int,
|
||||
score_threshold: Optional[float] = 0.0,
|
||||
reranking_model: Optional[dict] = None,
|
||||
reranking_mode: Optional[str] = "reranking_model",
|
||||
weights: Optional[dict] = None,
|
||||
):
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
|
||||
return []
|
||||
all_documents = []
|
||||
threads = []
|
||||
exceptions = []
|
||||
# retrieval_model source with keyword
|
||||
if retrieval_method == 'keyword_search':
|
||||
keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
'query': query,
|
||||
'top_k': top_k,
|
||||
'all_documents': all_documents,
|
||||
'exceptions': exceptions,
|
||||
})
|
||||
if retrieval_method == "keyword_search":
|
||||
keyword_thread = threading.Thread(
|
||||
target=RetrievalService.keyword_search,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(),
|
||||
"dataset_id": dataset_id,
|
||||
"query": query,
|
||||
"top_k": top_k,
|
||||
"all_documents": all_documents,
|
||||
"exceptions": exceptions,
|
||||
},
|
||||
)
|
||||
threads.append(keyword_thread)
|
||||
keyword_thread.start()
|
||||
# retrieval_model source with semantic
|
||||
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
||||
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
'query': query,
|
||||
'top_k': top_k,
|
||||
'score_threshold': score_threshold,
|
||||
'reranking_model': reranking_model,
|
||||
'all_documents': all_documents,
|
||||
'retrieval_method': retrieval_method,
|
||||
'exceptions': exceptions,
|
||||
})
|
||||
embedding_thread = threading.Thread(
|
||||
target=RetrievalService.embedding_search,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(),
|
||||
"dataset_id": dataset_id,
|
||||
"query": query,
|
||||
"top_k": top_k,
|
||||
"score_threshold": score_threshold,
|
||||
"reranking_model": reranking_model,
|
||||
"all_documents": all_documents,
|
||||
"retrieval_method": retrieval_method,
|
||||
"exceptions": exceptions,
|
||||
},
|
||||
)
|
||||
threads.append(embedding_thread)
|
||||
embedding_thread.start()
|
||||
|
||||
# retrieval source with full text
|
||||
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
||||
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
|
||||
'flask_app': current_app._get_current_object(),
|
||||
'dataset_id': dataset_id,
|
||||
'query': query,
|
||||
'retrieval_method': retrieval_method,
|
||||
'score_threshold': score_threshold,
|
||||
'top_k': top_k,
|
||||
'reranking_model': reranking_model,
|
||||
'all_documents': all_documents,
|
||||
'exceptions': exceptions,
|
||||
})
|
||||
full_text_index_thread = threading.Thread(
|
||||
target=RetrievalService.full_text_index_search,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(),
|
||||
"dataset_id": dataset_id,
|
||||
"query": query,
|
||||
"retrieval_method": retrieval_method,
|
||||
"score_threshold": score_threshold,
|
||||
"top_k": top_k,
|
||||
"reranking_model": reranking_model,
|
||||
"all_documents": all_documents,
|
||||
"exceptions": exceptions,
|
||||
},
|
||||
)
|
||||
threads.append(full_text_index_thread)
|
||||
full_text_index_thread.start()
|
||||
|
||||
@@ -86,110 +96,117 @@ class RetrievalService:
|
||||
thread.join()
|
||||
|
||||
if exceptions:
|
||||
exception_message = ';\n'.join(exceptions)
|
||||
exception_message = ";\n".join(exceptions)
|
||||
raise Exception(exception_message)
|
||||
|
||||
if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_mode,
|
||||
reranking_model, weights, False)
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
|
||||
)
|
||||
all_documents = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k
|
||||
query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
|
||||
)
|
||||
return all_documents
|
||||
|
||||
@classmethod
|
||||
def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||
top_k: int, all_documents: list, exceptions: list):
|
||||
def keyword_search(
|
||||
cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
|
||||
keyword = Keyword(
|
||||
dataset=dataset
|
||||
)
|
||||
keyword = Keyword(dataset=dataset)
|
||||
|
||||
documents = keyword.search(
|
||||
cls.escape_query_for_search(query),
|
||||
top_k=top_k
|
||||
)
|
||||
documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
|
||||
all_documents.extend(documents)
|
||||
except Exception as e:
|
||||
exceptions.append(str(e))
|
||||
|
||||
@classmethod
|
||||
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||
all_documents: list, retrieval_method: str, exceptions: list):
|
||||
def embedding_search(
|
||||
cls,
|
||||
flask_app: Flask,
|
||||
dataset_id: str,
|
||||
query: str,
|
||||
top_k: int,
|
||||
score_threshold: Optional[float],
|
||||
reranking_model: Optional[dict],
|
||||
all_documents: list,
|
||||
retrieval_method: str,
|
||||
exceptions: list,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
|
||||
vector = Vector(
|
||||
dataset=dataset
|
||||
)
|
||||
vector = Vector(dataset=dataset)
|
||||
|
||||
documents = vector.search_by_vector(
|
||||
cls.escape_query_for_search(query),
|
||||
search_type='similarity_score_threshold',
|
||||
search_type="similarity_score_threshold",
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={
|
||||
'group_id': [dataset.id]
|
||||
}
|
||||
filter={"group_id": [dataset.id]},
|
||||
)
|
||||
|
||||
if documents:
|
||||
if reranking_model and reranking_model.get('reranking_model_name') and reranking_model.get('reranking_provider_name') and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value:
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id),
|
||||
RerankMode.RERANKING_MODEL.value,
|
||||
reranking_model, None, False)
|
||||
all_documents.extend(data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents)
|
||||
))
|
||||
if (
|
||||
reranking_model
|
||||
and reranking_model.get("reranking_model_name")
|
||||
and reranking_model.get("reranking_provider_name")
|
||||
and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
|
||||
):
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
||||
)
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
|
||||
)
|
||||
)
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
except Exception as e:
|
||||
exceptions.append(str(e))
|
||||
|
||||
@classmethod
|
||||
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||
all_documents: list, retrieval_method: str, exceptions: list):
|
||||
def full_text_index_search(
|
||||
cls,
|
||||
flask_app: Flask,
|
||||
dataset_id: str,
|
||||
query: str,
|
||||
top_k: int,
|
||||
score_threshold: Optional[float],
|
||||
reranking_model: Optional[dict],
|
||||
all_documents: list,
|
||||
retrieval_method: str,
|
||||
exceptions: list,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
dataset = db.session.query(Dataset).filter(
|
||||
Dataset.id == dataset_id
|
||||
).first()
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
|
||||
vector_processor = Vector(
|
||||
dataset=dataset,
|
||||
)
|
||||
|
||||
documents = vector_processor.search_by_full_text(
|
||||
cls.escape_query_for_search(query),
|
||||
top_k=top_k
|
||||
)
|
||||
documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
|
||||
if documents:
|
||||
if reranking_model and reranking_model.get('reranking_model_name') and reranking_model.get('reranking_provider_name') and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value:
|
||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id),
|
||||
RerankMode.RERANKING_MODEL.value,
|
||||
reranking_model, None, False)
|
||||
all_documents.extend(data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents)
|
||||
))
|
||||
if (
|
||||
reranking_model
|
||||
and reranking_model.get("reranking_model_name")
|
||||
and reranking_model.get("reranking_provider_name")
|
||||
and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
|
||||
):
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
|
||||
)
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
|
||||
)
|
||||
)
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
except Exception as e:
|
||||
@@ -197,4 +214,4 @@ class RetrievalService:
|
||||
|
||||
@staticmethod
|
||||
def escape_query_for_search(query: str) -> str:
|
||||
return query.replace('"', '\\"')
|
||||
return query.replace('"', '\\"')
|
||||
|
Reference in New Issue
Block a user