chore(api/core): apply ruff reformatting (#7624)

This commit is contained in:
Bowen Liang
2024-09-10 17:00:20 +08:00
committed by GitHub
parent 178730266d
commit 2cf1187b32
724 changed files with 21180 additions and 21123 deletions

View File

@@ -13,13 +13,18 @@ from core.rag.rerank.entity.weight import VectorSetting, Weights
class WeightRerankRunner:
def __init__(self, tenant_id: str, weights: Weights) -> None:
self.tenant_id = tenant_id
self.weights = weights
def run(self, query: str, documents: list[Document], score_threshold: Optional[float] = None,
top_n: Optional[int] = None, user: Optional[str] = None) -> list[Document]:
def run(
self,
query: str,
documents: list[Document],
score_threshold: Optional[float] = None,
top_n: Optional[int] = None,
user: Optional[str] = None,
) -> list[Document]:
"""
Run rerank model
:param query: search query
@@ -34,8 +39,8 @@ class WeightRerankRunner:
doc_id = []
unique_documents = []
for document in documents:
if document.metadata['doc_id'] not in doc_id:
doc_id.append(document.metadata['doc_id'])
if document.metadata["doc_id"] not in doc_id:
doc_id.append(document.metadata["doc_id"])
docs.append(document.page_content)
unique_documents.append(document)
@@ -47,13 +52,15 @@ class WeightRerankRunner:
query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting)
for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores):
# format document
score = self.weights.vector_setting.vector_weight * query_vector_score + \
self.weights.keyword_setting.keyword_weight * query_score
score = (
self.weights.vector_setting.vector_weight * query_vector_score
+ self.weights.keyword_setting.keyword_weight * query_score
)
if score_threshold and score < score_threshold:
continue
document.metadata['score'] = score
document.metadata["score"] = score
rerank_documents.append(document)
rerank_documents = sorted(rerank_documents, key=lambda x: x.metadata['score'], reverse=True)
rerank_documents = sorted(rerank_documents, key=lambda x: x.metadata["score"], reverse=True)
return rerank_documents[:top_n] if top_n else rerank_documents
def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]:
@@ -70,7 +77,7 @@ class WeightRerankRunner:
for document in documents:
# get the document keywords
document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
document.metadata['keywords'] = document_keywords
document.metadata["keywords"] = document_keywords
documents_keywords.append(document_keywords)
# Counter query keywords(TF)
@@ -132,8 +139,9 @@ class WeightRerankRunner:
return similarities
def _calculate_cosine(self, tenant_id: str, query: str, documents: list[Document],
vector_setting: VectorSetting) -> list[float]:
def _calculate_cosine(
self, tenant_id: str, query: str, documents: list[Document], vector_setting: VectorSetting
) -> list[float]:
"""
Calculate Cosine scores
:param query: search query
@@ -149,15 +157,14 @@ class WeightRerankRunner:
tenant_id=tenant_id,
provider=vector_setting.embedding_provider_name,
model_type=ModelType.TEXT_EMBEDDING,
model=vector_setting.embedding_model_name
model=vector_setting.embedding_model_name,
)
cache_embedding = CacheEmbedding(embedding_model)
query_vector = cache_embedding.embed_query(query)
for document in documents:
# calculate cosine similarity
if 'score' in document.metadata:
query_vector_scores.append(document.metadata['score'])
if "score" in document.metadata:
query_vector_scores.append(document.metadata["score"])
else:
# transform to NumPy
vec1 = np.array(query_vector)