add new provider Solar (#6884)
This commit is contained in:
245
api/tests/integration_tests/model_runtime/upstage/test_llm.py
Normal file
245
api/tests/integration_tests/model_runtime/upstage/test_llm.py
Normal file
@@ -0,0 +1,245 @@
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.upstage.llm.llm import UpstageLargeLanguageModel
|
||||
|
||||
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
|
||||
def test_predefined_models():
|
||||
model = UpstageLargeLanguageModel()
|
||||
model_schemas = model.predefined_models()
|
||||
|
||||
assert len(model_schemas) >= 1
|
||||
assert isinstance(model_schemas[0], AIModelEntity)
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_validate_credentials_for_chat_model(setup_openai_mock):
|
||||
model = UpstageLargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
# model name to gpt-3.5-turbo because of mocking
|
||||
model.validate_credentials(
|
||||
model='gpt-3.5-turbo',
|
||||
credentials={
|
||||
'upstage_api_key': 'invalid_key'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='solar-1-mini-chat',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_chat_model(setup_openai_mock):
|
||||
model = UpstageLargeLanguageModel()
|
||||
|
||||
result = model.invoke(
|
||||
model='solar-1-mini-chat',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.0,
|
||||
'top_p': 1.0,
|
||||
'presence_penalty': 0.0,
|
||||
'frequency_penalty': 0.0,
|
||||
'max_tokens': 10
|
||||
},
|
||||
stop=['How'],
|
||||
stream=False,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(result, LLMResult)
|
||||
assert len(result.message.content) > 0
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_chat_model_with_tools(setup_openai_mock):
|
||||
model = UpstageLargeLanguageModel()
|
||||
|
||||
result = model.invoke(
|
||||
model='solar-1-mini-chat',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content="what's the weather today in London?",
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.0,
|
||||
'max_tokens': 100
|
||||
},
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name='get_weather',
|
||||
description='Determine weather in my location',
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state e.g. San Francisco, CA"
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"c",
|
||||
"f"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"location"
|
||||
]
|
||||
}
|
||||
),
|
||||
PromptMessageTool(
|
||||
name='get_stock_price',
|
||||
description='Get the current stock price',
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"symbol": {
|
||||
"type": "string",
|
||||
"description": "The stock symbol"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"symbol"
|
||||
]
|
||||
}
|
||||
)
|
||||
],
|
||||
stream=False,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(result, LLMResult)
|
||||
assert isinstance(result.message, AssistantPromptMessage)
|
||||
assert len(result.message.tool_calls) > 0
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_stream_chat_model(setup_openai_mock):
|
||||
model = UpstageLargeLanguageModel()
|
||||
|
||||
result = model.invoke(
|
||||
model='solar-1-mini-chat',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.0,
|
||||
'max_tokens': 100
|
||||
},
|
||||
stream=True,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(result, Generator)
|
||||
|
||||
for chunk in result:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
if chunk.delta.finish_reason is not None:
|
||||
assert chunk.delta.usage is not None
|
||||
assert chunk.delta.usage.completion_tokens > 0
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = UpstageLargeLanguageModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='solar-1-mini-chat',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
assert num_tokens == 13
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='solar-1-mini-chat',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name='get_weather',
|
||||
description='Determine weather in my location',
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state e.g. San Francisco, CA"
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"c",
|
||||
"f"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"location"
|
||||
]
|
||||
}
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
assert num_tokens == 106
|
@@ -0,0 +1,23 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.upstage.upstage import UpstageProvider
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_validate_provider_credentials(setup_openai_mock):
|
||||
provider = UpstageProvider()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
provider.validate_provider_credentials(
|
||||
credentials={}
|
||||
)
|
||||
|
||||
provider.validate_provider_credentials(
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
}
|
||||
)
|
@@ -0,0 +1,67 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.upstage.text_embedding.text_embedding import UpstageTextEmbeddingModel
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['text_embedding']], indirect=True)
|
||||
def test_validate_credentials(setup_openai_mock):
|
||||
model = UpstageTextEmbeddingModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='solar-embedding-1-large-passage',
|
||||
credentials={
|
||||
'upstage_api_key': 'invalid_key'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='solar-embedding-1-large-passage',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY')
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['text_embedding']], indirect=True)
|
||||
def test_invoke_model(setup_openai_mock):
|
||||
model = UpstageTextEmbeddingModel()
|
||||
|
||||
result = model.invoke(
|
||||
model='solar-embedding-1-large-passage',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY'),
|
||||
},
|
||||
texts=[
|
||||
"hello",
|
||||
"world",
|
||||
" ".join(["long_text"] * 100),
|
||||
" ".join(["another_long_text"] * 100)
|
||||
],
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(result, TextEmbeddingResult)
|
||||
assert len(result.embeddings) == 4
|
||||
assert result.usage.total_tokens == 2
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = UpstageTextEmbeddingModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='solar-embedding-1-large-passage',
|
||||
credentials={
|
||||
'upstage_api_key': os.environ.get('UPSTAGE_API_KEY'),
|
||||
},
|
||||
texts=[
|
||||
"hello",
|
||||
"world"
|
||||
]
|
||||
)
|
||||
|
||||
assert num_tokens == 5
|
Reference in New Issue
Block a user