feat: upgrade langchain (#430)
Co-authored-by: jyong <718720800@qq.com>
This commit is contained in:
@@ -1,35 +1,34 @@
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import tempfile
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional, List
|
||||
import uuid
|
||||
from typing import Optional, List, cast
|
||||
|
||||
from flask import current_app
|
||||
from flask_login import current_user
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
||||
|
||||
from llama_index import SimpleDirectoryReader
|
||||
from llama_index.data_structs import Node
|
||||
from llama_index.data_structs.node_v2 import DocumentRelationship
|
||||
from llama_index.node_parser import SimpleNodeParser, NodeParser
|
||||
from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
|
||||
from llama_index.readers.file.markdown_parser import MarkdownParser
|
||||
|
||||
from core.data_source.notion import NotionPageReader
|
||||
from core.index.readers.xlsx_parser import XLSXParser
|
||||
from core.data_loader.file_extractor import FileExtractor
|
||||
from core.data_loader.loader.notion import NotionLoader
|
||||
from core.docstore.dataset_docstore import DatesetDocumentStore
|
||||
from core.index.keyword_table_index import KeywordTableIndex
|
||||
from core.index.readers.html_parser import HTMLParser
|
||||
from core.index.readers.markdown_parser import MarkdownParser
|
||||
from core.index.readers.pdf_parser import PDFParser
|
||||
from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
||||
from core.index.vector_index import VectorIndex
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.index import IndexBuilder
|
||||
from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
|
||||
from core.index.vector_index.vector_index import VectorIndex
|
||||
from core.llm.error import ProviderTokenNotInitError
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
|
||||
from core.llm.token_calculator import TokenCalculator
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
|
||||
from libs import helper
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
|
||||
from models.model import UploadFile
|
||||
from models.source import DataSourceBinding
|
||||
|
||||
@@ -40,135 +39,171 @@ class IndexingRunner:
|
||||
self.storage = storage
|
||||
self.embedding_model_name = embedding_model_name
|
||||
|
||||
def run(self, documents: List[Document]):
|
||||
def run(self, dataset_documents: List[DatasetDocument]):
|
||||
"""Run the indexing process."""
|
||||
for document in documents:
|
||||
for dataset_document in dataset_documents:
|
||||
try:
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=dataset_document.dataset_id
|
||||
).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# load file
|
||||
text_docs = self._load_data(dataset_document)
|
||||
|
||||
# get the process rule
|
||||
processing_rule = db.session.query(DatasetProcessRule). \
|
||||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||||
first()
|
||||
|
||||
# get splitter
|
||||
splitter = self._get_splitter(processing_rule)
|
||||
|
||||
# split to documents
|
||||
documents = self._step_split(
|
||||
text_docs=text_docs,
|
||||
splitter=splitter,
|
||||
dataset=dataset,
|
||||
dataset_document=dataset_document,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
|
||||
# build index
|
||||
self._build_index(
|
||||
dataset=dataset,
|
||||
dataset_document=dataset_document,
|
||||
documents=documents
|
||||
)
|
||||
except DocumentIsPausedException:
|
||||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||||
except ProviderTokenNotInitError as e:
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.error = str(e)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
def run_in_splitting_status(self, dataset_document: DatasetDocument):
|
||||
"""Run the indexing process when the index_status is splitting."""
|
||||
try:
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=document.dataset_id
|
||||
id=dataset_document.dataset_id
|
||||
).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# get exist document_segment list and delete
|
||||
document_segments = DocumentSegment.query.filter_by(
|
||||
dataset_id=dataset.id,
|
||||
document_id=dataset_document.id
|
||||
).all()
|
||||
|
||||
db.session.delete(document_segments)
|
||||
db.session.commit()
|
||||
|
||||
# load file
|
||||
text_docs = self._load_data(document)
|
||||
text_docs = self._load_data(dataset_document)
|
||||
|
||||
# get the process rule
|
||||
processing_rule = db.session.query(DatasetProcessRule). \
|
||||
filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
|
||||
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
|
||||
first()
|
||||
|
||||
# get node parser for splitting
|
||||
node_parser = self._get_node_parser(processing_rule)
|
||||
# get splitter
|
||||
splitter = self._get_splitter(processing_rule)
|
||||
|
||||
# split to nodes
|
||||
nodes = self._step_split(
|
||||
# split to documents
|
||||
documents = self._step_split(
|
||||
text_docs=text_docs,
|
||||
node_parser=node_parser,
|
||||
splitter=splitter,
|
||||
dataset=dataset,
|
||||
document=document,
|
||||
dataset_document=dataset_document,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
|
||||
# build index
|
||||
self._build_index(
|
||||
dataset=dataset,
|
||||
document=document,
|
||||
nodes=nodes
|
||||
dataset_document=dataset_document,
|
||||
documents=documents
|
||||
)
|
||||
except DocumentIsPausedException:
|
||||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||||
except ProviderTokenNotInitError as e:
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.error = str(e)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
def run_in_splitting_status(self, document: Document):
|
||||
"""Run the indexing process when the index_status is splitting."""
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=document.dataset_id
|
||||
).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# get exist document_segment list and delete
|
||||
document_segments = DocumentSegment.query.filter_by(
|
||||
dataset_id=dataset.id,
|
||||
document_id=document.id
|
||||
).all()
|
||||
db.session.delete(document_segments)
|
||||
db.session.commit()
|
||||
# load file
|
||||
text_docs = self._load_data(document)
|
||||
|
||||
# get the process rule
|
||||
processing_rule = db.session.query(DatasetProcessRule). \
|
||||
filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
|
||||
first()
|
||||
|
||||
# get node parser for splitting
|
||||
node_parser = self._get_node_parser(processing_rule)
|
||||
|
||||
# split to nodes
|
||||
nodes = self._step_split(
|
||||
text_docs=text_docs,
|
||||
node_parser=node_parser,
|
||||
dataset=dataset,
|
||||
document=document,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
|
||||
# build index
|
||||
self._build_index(
|
||||
dataset=dataset,
|
||||
document=document,
|
||||
nodes=nodes
|
||||
)
|
||||
|
||||
def run_in_indexing_status(self, document: Document):
|
||||
def run_in_indexing_status(self, dataset_document: DatasetDocument):
|
||||
"""Run the indexing process when the index_status is indexing."""
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=document.dataset_id
|
||||
).first()
|
||||
try:
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=dataset_document.dataset_id
|
||||
).first()
|
||||
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
if not dataset:
|
||||
raise ValueError("no dataset found")
|
||||
|
||||
# get exist document_segment list and delete
|
||||
document_segments = DocumentSegment.query.filter_by(
|
||||
dataset_id=dataset.id,
|
||||
document_id=document.id
|
||||
).all()
|
||||
nodes = []
|
||||
if document_segments:
|
||||
for document_segment in document_segments:
|
||||
# transform segment to node
|
||||
if document_segment.status != "completed":
|
||||
relationships = {
|
||||
DocumentRelationship.SOURCE: document_segment.document_id,
|
||||
}
|
||||
# get exist document_segment list and delete
|
||||
document_segments = DocumentSegment.query.filter_by(
|
||||
dataset_id=dataset.id,
|
||||
document_id=dataset_document.id
|
||||
).all()
|
||||
|
||||
previous_segment = document_segment.previous_segment
|
||||
if previous_segment:
|
||||
relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
|
||||
documents = []
|
||||
if document_segments:
|
||||
for document_segment in document_segments:
|
||||
# transform segment to node
|
||||
if document_segment.status != "completed":
|
||||
document = Document(
|
||||
page_content=document_segment.content,
|
||||
metadata={
|
||||
"doc_id": document_segment.index_node_id,
|
||||
"doc_hash": document_segment.index_node_hash,
|
||||
"document_id": document_segment.document_id,
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
}
|
||||
)
|
||||
|
||||
next_segment = document_segment.next_segment
|
||||
if next_segment:
|
||||
relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
|
||||
node = Node(
|
||||
doc_id=document_segment.index_node_id,
|
||||
doc_hash=document_segment.index_node_hash,
|
||||
text=document_segment.content,
|
||||
extra_info=None,
|
||||
node_info=None,
|
||||
relationships=relationships
|
||||
)
|
||||
nodes.append(node)
|
||||
documents.append(document)
|
||||
|
||||
# build index
|
||||
self._build_index(
|
||||
dataset=dataset,
|
||||
document=document,
|
||||
nodes=nodes
|
||||
)
|
||||
# build index
|
||||
self._build_index(
|
||||
dataset=dataset,
|
||||
dataset_document=dataset_document,
|
||||
documents=documents
|
||||
)
|
||||
except DocumentIsPausedException:
|
||||
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
|
||||
except ProviderTokenNotInitError as e:
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.error = str(e.description)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
except Exception as e:
|
||||
logging.exception("consume document failed")
|
||||
dataset_document.indexing_status = 'error'
|
||||
dataset_document.error = str(e)
|
||||
dataset_document.stopped_at = datetime.datetime.utcnow()
|
||||
db.session.commit()
|
||||
|
||||
def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict) -> dict:
|
||||
"""
|
||||
@@ -179,28 +214,28 @@ class IndexingRunner:
|
||||
total_segments = 0
|
||||
for file_detail in file_details:
|
||||
# load data from file
|
||||
text_docs = self._load_data_from_file(file_detail)
|
||||
text_docs = FileExtractor.load(file_detail)
|
||||
|
||||
processing_rule = DatasetProcessRule(
|
||||
mode=tmp_processing_rule["mode"],
|
||||
rules=json.dumps(tmp_processing_rule["rules"])
|
||||
)
|
||||
|
||||
# get node parser for splitting
|
||||
node_parser = self._get_node_parser(processing_rule)
|
||||
# get splitter
|
||||
splitter = self._get_splitter(processing_rule)
|
||||
|
||||
# split to nodes
|
||||
nodes = self._split_to_nodes(
|
||||
# split to documents
|
||||
documents = self._split_to_documents(
|
||||
text_docs=text_docs,
|
||||
node_parser=node_parser,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
total_segments += len(nodes)
|
||||
for node in nodes:
|
||||
total_segments += len(documents)
|
||||
for document in documents:
|
||||
if len(preview_texts) < 5:
|
||||
preview_texts.append(node.get_text())
|
||||
preview_texts.append(document.page_content)
|
||||
|
||||
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
|
||||
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
||||
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
@@ -230,35 +265,36 @@ class IndexingRunner:
|
||||
).first()
|
||||
if not data_source_binding:
|
||||
raise ValueError('Data source binding not found.')
|
||||
reader = NotionPageReader(integration_token=data_source_binding.access_token)
|
||||
|
||||
for page in notion_info['pages']:
|
||||
if page['type'] == 'page':
|
||||
page_ids = [page['page_id']]
|
||||
documents = reader.load_data_as_documents(page_ids=page_ids)
|
||||
elif page['type'] == 'database':
|
||||
documents = reader.load_data_as_documents(database_id=page['page_id'])
|
||||
else:
|
||||
documents = []
|
||||
loader = NotionLoader(
|
||||
notion_access_token=data_source_binding.access_token,
|
||||
notion_workspace_id=workspace_id,
|
||||
notion_obj_id=page['page_id'],
|
||||
notion_page_type=page['type']
|
||||
)
|
||||
documents = loader.load()
|
||||
|
||||
processing_rule = DatasetProcessRule(
|
||||
mode=tmp_processing_rule["mode"],
|
||||
rules=json.dumps(tmp_processing_rule["rules"])
|
||||
)
|
||||
|
||||
# get node parser for splitting
|
||||
node_parser = self._get_node_parser(processing_rule)
|
||||
# get splitter
|
||||
splitter = self._get_splitter(processing_rule)
|
||||
|
||||
# split to nodes
|
||||
nodes = self._split_to_nodes(
|
||||
# split to documents
|
||||
documents = self._split_to_documents(
|
||||
text_docs=documents,
|
||||
node_parser=node_parser,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
total_segments += len(nodes)
|
||||
for node in nodes:
|
||||
total_segments += len(documents)
|
||||
for document in documents:
|
||||
if len(preview_texts) < 5:
|
||||
preview_texts.append(node.get_text())
|
||||
preview_texts.append(document.page_content)
|
||||
|
||||
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
|
||||
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
||||
|
||||
return {
|
||||
"total_segments": total_segments,
|
||||
@@ -268,14 +304,14 @@ class IndexingRunner:
|
||||
"preview": preview_texts
|
||||
}
|
||||
|
||||
def _load_data(self, document: Document) -> List[Document]:
|
||||
def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
|
||||
# load file
|
||||
if document.data_source_type not in ["upload_file", "notion_import"]:
|
||||
if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
|
||||
return []
|
||||
|
||||
data_source_info = document.data_source_info_dict
|
||||
data_source_info = dataset_document.data_source_info_dict
|
||||
text_docs = []
|
||||
if document.data_source_type == 'upload_file':
|
||||
if dataset_document.data_source_type == 'upload_file':
|
||||
if not data_source_info or 'upload_file_id' not in data_source_info:
|
||||
raise ValueError("no upload file found")
|
||||
|
||||
@@ -283,47 +319,28 @@ class IndexingRunner:
|
||||
filter(UploadFile.id == data_source_info['upload_file_id']). \
|
||||
one_or_none()
|
||||
|
||||
text_docs = self._load_data_from_file(file_detail)
|
||||
elif document.data_source_type == 'notion_import':
|
||||
if not data_source_info or 'notion_page_id' not in data_source_info \
|
||||
or 'notion_workspace_id' not in data_source_info:
|
||||
raise ValueError("no notion page found")
|
||||
workspace_id = data_source_info['notion_workspace_id']
|
||||
page_id = data_source_info['notion_page_id']
|
||||
page_type = data_source_info['type']
|
||||
data_source_binding = DataSourceBinding.query.filter(
|
||||
db.and_(
|
||||
DataSourceBinding.tenant_id == document.tenant_id,
|
||||
DataSourceBinding.provider == 'notion',
|
||||
DataSourceBinding.disabled == False,
|
||||
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
|
||||
)
|
||||
).first()
|
||||
if not data_source_binding:
|
||||
raise ValueError('Data source binding not found.')
|
||||
if page_type == 'page':
|
||||
# add page last_edited_time to data_source_info
|
||||
self._get_notion_page_last_edited_time(page_id, data_source_binding.access_token, document)
|
||||
text_docs = self._load_page_data_from_notion(page_id, data_source_binding.access_token)
|
||||
elif page_type == 'database':
|
||||
# add page last_edited_time to data_source_info
|
||||
self._get_notion_database_last_edited_time(page_id, data_source_binding.access_token, document)
|
||||
text_docs = self._load_database_data_from_notion(page_id, data_source_binding.access_token)
|
||||
text_docs = FileExtractor.load(file_detail)
|
||||
elif dataset_document.data_source_type == 'notion_import':
|
||||
loader = NotionLoader.from_document(dataset_document)
|
||||
text_docs = loader.load()
|
||||
|
||||
# update document status to splitting
|
||||
self._update_document_index_status(
|
||||
document_id=document.id,
|
||||
document_id=dataset_document.id,
|
||||
after_indexing_status="splitting",
|
||||
extra_update_params={
|
||||
Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
|
||||
Document.parsing_completed_at: datetime.datetime.utcnow()
|
||||
DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
|
||||
DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
|
||||
}
|
||||
)
|
||||
|
||||
# replace doc id to document model id
|
||||
text_docs = cast(List[Document], text_docs)
|
||||
for text_doc in text_docs:
|
||||
# remove invalid symbol
|
||||
text_doc.text = self.filter_string(text_doc.get_text())
|
||||
text_doc.doc_id = document.id
|
||||
text_doc.page_content = self.filter_string(text_doc.page_content)
|
||||
text_doc.metadata['document_id'] = dataset_document.id
|
||||
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
|
||||
|
||||
return text_docs
|
||||
|
||||
@@ -331,61 +348,7 @@ class IndexingRunner:
|
||||
pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
|
||||
return pattern.sub('', text)
|
||||
|
||||
def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
suffix = Path(upload_file.key).suffix
|
||||
filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
|
||||
self.storage.download(upload_file.key, filepath)
|
||||
|
||||
file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
|
||||
file_extractor[".markdown"] = MarkdownParser()
|
||||
file_extractor[".md"] = MarkdownParser()
|
||||
file_extractor[".html"] = HTMLParser()
|
||||
file_extractor[".htm"] = HTMLParser()
|
||||
file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
|
||||
file_extractor[".xlsx"] = XLSXParser()
|
||||
|
||||
loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
|
||||
text_docs = loader.load_data()
|
||||
|
||||
return text_docs
|
||||
|
||||
def _load_page_data_from_notion(self, page_id: str, access_token: str) -> List[Document]:
|
||||
page_ids = [page_id]
|
||||
reader = NotionPageReader(integration_token=access_token)
|
||||
text_docs = reader.load_data_as_documents(page_ids=page_ids)
|
||||
return text_docs
|
||||
|
||||
def _load_database_data_from_notion(self, database_id: str, access_token: str) -> List[Document]:
|
||||
reader = NotionPageReader(integration_token=access_token)
|
||||
text_docs = reader.load_data_as_documents(database_id=database_id)
|
||||
return text_docs
|
||||
|
||||
def _get_notion_page_last_edited_time(self, page_id: str, access_token: str, document: Document):
|
||||
reader = NotionPageReader(integration_token=access_token)
|
||||
last_edited_time = reader.get_page_last_edited_time(page_id)
|
||||
data_source_info = document.data_source_info_dict
|
||||
data_source_info['last_edited_time'] = last_edited_time
|
||||
update_params = {
|
||||
Document.data_source_info: json.dumps(data_source_info)
|
||||
}
|
||||
|
||||
Document.query.filter_by(id=document.id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
def _get_notion_database_last_edited_time(self, page_id: str, access_token: str, document: Document):
|
||||
reader = NotionPageReader(integration_token=access_token)
|
||||
last_edited_time = reader.get_database_last_edited_time(page_id)
|
||||
data_source_info = document.data_source_info_dict
|
||||
data_source_info['last_edited_time'] = last_edited_time
|
||||
update_params = {
|
||||
Document.data_source_info: json.dumps(data_source_info)
|
||||
}
|
||||
|
||||
Document.query.filter_by(id=document.id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
|
||||
def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
|
||||
"""
|
||||
Get the NodeParser object according to the processing rule.
|
||||
"""
|
||||
@@ -414,68 +377,83 @@ class IndexingRunner:
|
||||
separators=["\n\n", "。", ".", " ", ""]
|
||||
)
|
||||
|
||||
return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
|
||||
return character_splitter
|
||||
|
||||
def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
|
||||
dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
|
||||
def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
|
||||
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
|
||||
-> List[Document]:
|
||||
"""
|
||||
Split the text documents into nodes and save them to the document segment.
|
||||
Split the text documents into documents and save them to the document segment.
|
||||
"""
|
||||
nodes = self._split_to_nodes(
|
||||
documents = self._split_to_documents(
|
||||
text_docs=text_docs,
|
||||
node_parser=node_parser,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule
|
||||
)
|
||||
|
||||
# save node to document segment
|
||||
doc_store = DatesetDocumentStore(
|
||||
dataset=dataset,
|
||||
user_id=document.created_by,
|
||||
user_id=dataset_document.created_by,
|
||||
embedding_model_name=self.embedding_model_name,
|
||||
document_id=document.id
|
||||
document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(nodes)
|
||||
doc_store.add_documents(documents)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = datetime.datetime.utcnow()
|
||||
self._update_document_index_status(
|
||||
document_id=document.id,
|
||||
document_id=dataset_document.id,
|
||||
after_indexing_status="indexing",
|
||||
extra_update_params={
|
||||
Document.cleaning_completed_at: cur_time,
|
||||
Document.splitting_completed_at: cur_time,
|
||||
DatasetDocument.cleaning_completed_at: cur_time,
|
||||
DatasetDocument.splitting_completed_at: cur_time,
|
||||
}
|
||||
)
|
||||
|
||||
# update segment status to indexing
|
||||
self._update_segments_by_document(
|
||||
document_id=document.id,
|
||||
dataset_document_id=dataset_document.id,
|
||||
update_params={
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.utcnow()
|
||||
}
|
||||
)
|
||||
|
||||
return nodes
|
||||
return documents
|
||||
|
||||
def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
|
||||
processing_rule: DatasetProcessRule) -> List[Node]:
|
||||
def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule) -> List[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
all_nodes = []
|
||||
all_documents = []
|
||||
for text_doc in text_docs:
|
||||
# document clean
|
||||
document_text = self._document_clean(text_doc.get_text(), processing_rule)
|
||||
text_doc.text = document_text
|
||||
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
||||
text_doc.page_content = document_text
|
||||
|
||||
# parse document to nodes
|
||||
nodes = node_parser.get_nodes_from_documents([text_doc])
|
||||
nodes = [node for node in nodes if node.text is not None and node.text.strip()]
|
||||
all_nodes.extend(nodes)
|
||||
documents = splitter.split_documents([text_doc])
|
||||
|
||||
return all_nodes
|
||||
split_documents = []
|
||||
for document in documents:
|
||||
if document.page_content is None or not document.page_content.strip():
|
||||
continue
|
||||
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document.page_content)
|
||||
|
||||
document.metadata['doc_id'] = doc_id
|
||||
document.metadata['doc_hash'] = hash
|
||||
|
||||
split_documents.append(document)
|
||||
|
||||
all_documents.extend(split_documents)
|
||||
|
||||
return all_documents
|
||||
|
||||
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
|
||||
"""
|
||||
@@ -506,37 +484,38 @@ class IndexingRunner:
|
||||
|
||||
return text
|
||||
|
||||
def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
|
||||
def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
|
||||
"""
|
||||
Build the index for the document.
|
||||
"""
|
||||
vector_index = VectorIndex(dataset=dataset)
|
||||
keyword_table_index = KeywordTableIndex(dataset=dataset)
|
||||
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
||||
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
|
||||
|
||||
# chunk nodes by chunk size
|
||||
indexing_start_at = time.perf_counter()
|
||||
tokens = 0
|
||||
chunk_size = 100
|
||||
for i in range(0, len(nodes), chunk_size):
|
||||
for i in range(0, len(documents), chunk_size):
|
||||
# check document is paused
|
||||
self._check_document_paused_status(document.id)
|
||||
chunk_nodes = nodes[i:i + chunk_size]
|
||||
self._check_document_paused_status(dataset_document.id)
|
||||
chunk_documents = documents[i:i + chunk_size]
|
||||
|
||||
tokens += sum(
|
||||
TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
|
||||
TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
|
||||
for document in chunk_documents
|
||||
)
|
||||
|
||||
# save vector index
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector_index.add_nodes(chunk_nodes)
|
||||
if vector_index:
|
||||
vector_index.add_texts(chunk_documents)
|
||||
|
||||
# save keyword index
|
||||
keyword_table_index.add_nodes(chunk_nodes)
|
||||
keyword_table_index.add_texts(chunk_documents)
|
||||
|
||||
node_ids = [node.doc_id for node in chunk_nodes]
|
||||
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
|
||||
db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.document_id == document.id,
|
||||
DocumentSegment.index_node_id.in_(node_ids),
|
||||
DocumentSegment.document_id == dataset_document.id,
|
||||
DocumentSegment.index_node_id.in_(document_ids),
|
||||
DocumentSegment.status == "indexing"
|
||||
).update({
|
||||
DocumentSegment.status: "completed",
|
||||
@@ -549,12 +528,12 @@ class IndexingRunner:
|
||||
|
||||
# update document status to completed
|
||||
self._update_document_index_status(
|
||||
document_id=document.id,
|
||||
document_id=dataset_document.id,
|
||||
after_indexing_status="completed",
|
||||
extra_update_params={
|
||||
Document.tokens: tokens,
|
||||
Document.completed_at: datetime.datetime.utcnow(),
|
||||
Document.indexing_latency: indexing_end_at - indexing_start_at,
|
||||
DatasetDocument.tokens: tokens,
|
||||
DatasetDocument.completed_at: datetime.datetime.utcnow(),
|
||||
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
|
||||
}
|
||||
)
|
||||
|
||||
@@ -569,25 +548,25 @@ class IndexingRunner:
|
||||
"""
|
||||
Update the document indexing status.
|
||||
"""
|
||||
count = Document.query.filter_by(id=document_id, is_paused=True).count()
|
||||
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
|
||||
if count > 0:
|
||||
raise DocumentIsPausedException()
|
||||
|
||||
update_params = {
|
||||
Document.indexing_status: after_indexing_status
|
||||
DatasetDocument.indexing_status: after_indexing_status
|
||||
}
|
||||
|
||||
if extra_update_params:
|
||||
update_params.update(extra_update_params)
|
||||
|
||||
Document.query.filter_by(id=document_id).update(update_params)
|
||||
DatasetDocument.query.filter_by(id=document_id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
|
||||
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
|
||||
"""
|
||||
Update the document segment by document id.
|
||||
"""
|
||||
DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
|
||||
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user