feat: upgrade langchain (#430)
Co-authored-by: jyong <718720800@qq.com>
This commit is contained in:
@@ -3,47 +3,56 @@ import time
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from llama_index.data_structs.node_v2 import NodeWithScore
|
||||
from llama_index.indices.query.schema import QueryBundle
|
||||
from llama_index.indices.vector_store import GPTVectorStoreIndexQuery
|
||||
from flask import current_app
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.schema import Document
|
||||
from sklearn.manifold import TSNE
|
||||
|
||||
from core.docstore.empty_docstore import EmptyDocumentStore
|
||||
from core.index.vector_index import VectorIndex
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.index.vector_index.vector_index import VectorIndex
|
||||
from core.llm.llm_builder import LLMBuilder
|
||||
from extensions.ext_database import db
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, DocumentSegment, DatasetQuery
|
||||
from services.errors.index import IndexNotInitializedError
|
||||
|
||||
|
||||
class HitTestingService:
|
||||
@classmethod
|
||||
def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
|
||||
index = VectorIndex(dataset=dataset).query_index
|
||||
if dataset.available_document_count == 0 or dataset.available_document_count == 0:
|
||||
return {
|
||||
"query": {
|
||||
"content": query,
|
||||
"tsne_position": {'x': 0, 'y': 0},
|
||||
},
|
||||
"records": []
|
||||
}
|
||||
|
||||
if not index:
|
||||
raise IndexNotInitializedError()
|
||||
|
||||
index_query = GPTVectorStoreIndexQuery(
|
||||
index_struct=index.index_struct,
|
||||
service_context=index.service_context,
|
||||
vector_store=index.query_context.get('vector_store'),
|
||||
docstore=EmptyDocumentStore(),
|
||||
response_synthesizer=None,
|
||||
similarity_top_k=limit
|
||||
model_credentials = LLMBuilder.get_model_credentials(
|
||||
tenant_id=dataset.tenant_id,
|
||||
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id),
|
||||
model_name='text-embedding-ada-002'
|
||||
)
|
||||
|
||||
query_bundle = QueryBundle(
|
||||
query_str=query,
|
||||
custom_embedding_strs=[query],
|
||||
)
|
||||
embeddings = CacheEmbedding(OpenAIEmbeddings(
|
||||
**model_credentials
|
||||
))
|
||||
|
||||
query_bundle.embedding = index.service_context.embed_model.get_agg_embedding_from_queries(
|
||||
query_bundle.embedding_strs
|
||||
vector_index = VectorIndex(
|
||||
dataset=dataset,
|
||||
config=current_app.config,
|
||||
embeddings=embeddings
|
||||
)
|
||||
|
||||
start = time.perf_counter()
|
||||
nodes = index_query.retrieve(query_bundle=query_bundle)
|
||||
documents = vector_index.search(
|
||||
query,
|
||||
search_type='similarity_score_threshold',
|
||||
search_kwargs={
|
||||
'k': 10
|
||||
}
|
||||
)
|
||||
end = time.perf_counter()
|
||||
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
|
||||
|
||||
@@ -58,25 +67,24 @@ class HitTestingService:
|
||||
db.session.add(dataset_query)
|
||||
db.session.commit()
|
||||
|
||||
return cls.compact_retrieve_response(dataset, query_bundle, nodes)
|
||||
return cls.compact_retrieve_response(dataset, embeddings, query, documents)
|
||||
|
||||
@classmethod
|
||||
def compact_retrieve_response(cls, dataset: Dataset, query_bundle: QueryBundle, nodes: List[NodeWithScore]):
|
||||
embeddings = [
|
||||
query_bundle.embedding
|
||||
def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
|
||||
text_embeddings = [
|
||||
embeddings.embed_query(query)
|
||||
]
|
||||
|
||||
for node in nodes:
|
||||
embeddings.append(node.node.embedding)
|
||||
text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
|
||||
|
||||
tsne_position_data = cls.get_tsne_positions_from_embeddings(embeddings)
|
||||
tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
|
||||
|
||||
query_position = tsne_position_data.pop(0)
|
||||
|
||||
i = 0
|
||||
records = []
|
||||
for node in nodes:
|
||||
index_node_id = node.node.doc_id
|
||||
for document in documents:
|
||||
index_node_id = document.metadata['doc_id']
|
||||
|
||||
segment = db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.dataset_id == dataset.id,
|
||||
@@ -91,7 +99,7 @@ class HitTestingService:
|
||||
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": node.score,
|
||||
"score": document.metadata['score'],
|
||||
"tsne_position": tsne_position_data[i]
|
||||
}
|
||||
|
||||
@@ -101,7 +109,7 @@ class HitTestingService:
|
||||
|
||||
return {
|
||||
"query": {
|
||||
"content": query_bundle.query_str,
|
||||
"content": query,
|
||||
"tsne_position": query_position,
|
||||
},
|
||||
"records": records
|
||||
|
Reference in New Issue
Block a user