feat: upgrade langchain (#430)

Co-authored-by: jyong <718720800@qq.com>
This commit is contained in:
John Wang
2023-06-25 16:49:14 +08:00
committed by GitHub
parent 1dee5de9b4
commit 3241e4015b
91 changed files with 2703 additions and 3153 deletions

View File

@@ -3,47 +3,56 @@ import time
from typing import List
import numpy as np
from llama_index.data_structs.node_v2 import NodeWithScore
from llama_index.indices.query.schema import QueryBundle
from llama_index.indices.vector_store import GPTVectorStoreIndexQuery
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from sklearn.manifold import TSNE
from core.docstore.empty_docstore import EmptyDocumentStore
from core.index.vector_index import VectorIndex
from core.embedding.cached_embedding import CacheEmbedding
from core.index.vector_index.vector_index import VectorIndex
from core.llm.llm_builder import LLMBuilder
from extensions.ext_database import db
from models.account import Account
from models.dataset import Dataset, DocumentSegment, DatasetQuery
from services.errors.index import IndexNotInitializedError
class HitTestingService:
@classmethod
def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
index = VectorIndex(dataset=dataset).query_index
if dataset.available_document_count == 0 or dataset.available_document_count == 0:
return {
"query": {
"content": query,
"tsne_position": {'x': 0, 'y': 0},
},
"records": []
}
if not index:
raise IndexNotInitializedError()
index_query = GPTVectorStoreIndexQuery(
index_struct=index.index_struct,
service_context=index.service_context,
vector_store=index.query_context.get('vector_store'),
docstore=EmptyDocumentStore(),
response_synthesizer=None,
similarity_top_k=limit
model_credentials = LLMBuilder.get_model_credentials(
tenant_id=dataset.tenant_id,
model_provider=LLMBuilder.get_default_provider(dataset.tenant_id),
model_name='text-embedding-ada-002'
)
query_bundle = QueryBundle(
query_str=query,
custom_embedding_strs=[query],
)
embeddings = CacheEmbedding(OpenAIEmbeddings(
**model_credentials
))
query_bundle.embedding = index.service_context.embed_model.get_agg_embedding_from_queries(
query_bundle.embedding_strs
vector_index = VectorIndex(
dataset=dataset,
config=current_app.config,
embeddings=embeddings
)
start = time.perf_counter()
nodes = index_query.retrieve(query_bundle=query_bundle)
documents = vector_index.search(
query,
search_type='similarity_score_threshold',
search_kwargs={
'k': 10
}
)
end = time.perf_counter()
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
@@ -58,25 +67,24 @@ class HitTestingService:
db.session.add(dataset_query)
db.session.commit()
return cls.compact_retrieve_response(dataset, query_bundle, nodes)
return cls.compact_retrieve_response(dataset, embeddings, query, documents)
@classmethod
def compact_retrieve_response(cls, dataset: Dataset, query_bundle: QueryBundle, nodes: List[NodeWithScore]):
embeddings = [
query_bundle.embedding
def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
text_embeddings = [
embeddings.embed_query(query)
]
for node in nodes:
embeddings.append(node.node.embedding)
text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
tsne_position_data = cls.get_tsne_positions_from_embeddings(embeddings)
tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
query_position = tsne_position_data.pop(0)
i = 0
records = []
for node in nodes:
index_node_id = node.node.doc_id
for document in documents:
index_node_id = document.metadata['doc_id']
segment = db.session.query(DocumentSegment).filter(
DocumentSegment.dataset_id == dataset.id,
@@ -91,7 +99,7 @@ class HitTestingService:
record = {
"segment": segment,
"score": node.score,
"score": document.metadata['score'],
"tsne_position": tsne_position_data[i]
}
@@ -101,7 +109,7 @@ class HitTestingService:
return {
"query": {
"content": query_bundle.query_str,
"content": query,
"tsne_position": query_position,
},
"records": records