A more concise and effective extractor for excel and csv files (#20625)

Co-authored-by: haiyangpengai <xxxx>
This commit is contained in:
HaiyangP
2025-06-05 14:59:55 +08:00
committed by GitHub
parent 0ccf8cb23e
commit 3fb9b41fe5
2 changed files with 94 additions and 94 deletions

View File

@@ -397,19 +397,44 @@ def _extract_text_from_csv(file_content: bytes) -> str:
if not rows:
return ""
# Create Markdown table
markdown_table = "| " + " | ".join(rows[0]) + " |\n"
markdown_table += "| " + " | ".join(["---"] * len(rows[0])) + " |\n"
for row in rows[1:]:
markdown_table += "| " + " | ".join(row) + " |\n"
# Combine multi-line text in the header row
header_row = [cell.replace("\n", " ").replace("\r", "") for cell in rows[0]]
return markdown_table.strip()
# Create Markdown table
markdown_table = "| " + " | ".join(header_row) + " |\n"
markdown_table += "| " + " | ".join(["-" * len(col) for col in rows[0]]) + " |\n"
# Process each data row and combine multi-line text in each cell
for row in rows[1:]:
processed_row = [cell.replace("\n", " ").replace("\r", "") for cell in row]
markdown_table += "| " + " | ".join(processed_row) + " |\n"
return markdown_table
except Exception as e:
raise TextExtractionError(f"Failed to extract text from CSV: {str(e)}") from e
def _extract_text_from_excel(file_content: bytes) -> str:
"""Extract text from an Excel file using pandas."""
def _construct_markdown_table(df: pd.DataFrame) -> str:
"""Manually construct a Markdown table from a DataFrame."""
# Construct the header row
header_row = "| " + " | ".join(df.columns) + " |"
# Construct the separator row
separator_row = "| " + " | ".join(["-" * len(col) for col in df.columns]) + " |"
# Construct the data rows
data_rows = []
for _, row in df.iterrows():
data_row = "| " + " | ".join(map(str, row)) + " |"
data_rows.append(data_row)
# Combine all rows into a single string
markdown_table = "\n".join([header_row, separator_row] + data_rows)
return markdown_table
try:
excel_file = pd.ExcelFile(io.BytesIO(file_content))
markdown_table = ""
@@ -417,8 +442,15 @@ def _extract_text_from_excel(file_content: bytes) -> str:
try:
df = excel_file.parse(sheet_name=sheet_name)
df.dropna(how="all", inplace=True)
# Create Markdown table two times to separate tables with a newline
markdown_table += df.to_markdown(index=False, floatfmt="") + "\n\n"
# Combine multi-line text in each cell into a single line
df = df.applymap(lambda x: " ".join(str(x).splitlines()) if isinstance(x, str) else x) # type: ignore
# Combine multi-line text in column names into a single line
df.columns = pd.Index([" ".join(col.splitlines()) for col in df.columns])
# Manually construct the Markdown table
markdown_table += _construct_markdown_table(df) + "\n\n"
except Exception as e:
continue
return markdown_table

View File

@@ -1,5 +1,7 @@
import io
from unittest.mock import Mock, patch
import pandas as pd
import pytest
from docx.oxml.text.paragraph import CT_P
@@ -187,145 +189,134 @@ def test_node_type(document_extractor_node):
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_single_sheet(mock_excel_file):
"""Test extracting text from Excel file with single sheet."""
# Mock DataFrame
mock_df = Mock()
mock_df.dropna = Mock()
mock_df.to_markdown.return_value = "| Name | Age |\n|------|-----|\n| John | 25 |"
"""Test extracting text from Excel file with single sheet and multiline content."""
# Test multi-line cell
data = {"Name\nwith\nnewline": ["John\nDoe", "Jane\nSmith"], "Age": [25, 30]}
df = pd.DataFrame(data)
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["Sheet1"]
mock_excel_instance.parse.return_value = mock_df
mock_excel_instance.parse.return_value = df
mock_excel_file.return_value = mock_excel_instance
file_content = b"fake_excel_content"
result = _extract_text_from_excel(file_content)
expected_manual = "| Name with newline | Age |\n| ----------------- | --- |\n\
| John Doe | 25 |\n| Jane Smith | 30 |\n\n"
expected = "| Name | Age |\n|------|-----|\n| John | 25 |\n\n"
assert result == expected
mock_excel_file.assert_called_once()
mock_df.dropna.assert_called_once_with(how="all", inplace=True)
mock_df.to_markdown.assert_called_once_with(index=False, floatfmt="")
assert expected_manual == result
mock_excel_instance.parse.assert_called_once_with(sheet_name="Sheet1")
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_multiple_sheets(mock_excel_file):
"""Test extracting text from Excel file with multiple sheets."""
# Mock DataFrames for different sheets
mock_df1 = Mock()
mock_df1.dropna = Mock()
mock_df1.to_markdown.return_value = "| Product | Price |\n|---------|-------|\n| Apple | 1.50 |"
"""Test extracting text from Excel file with multiple sheets and multiline content."""
mock_df2 = Mock()
mock_df2.dropna = Mock()
mock_df2.to_markdown.return_value = "| City | Population |\n|------|------------|\n| NYC | 8000000 |"
# Test multi-line cell
data1 = {"Product\nName": ["Apple\nRed", "Banana\nYellow"], "Price": [1.50, 0.99]}
df1 = pd.DataFrame(data1)
data2 = {"City\nName": ["New\nYork", "Los\nAngeles"], "Population": [8000000, 3900000]}
df2 = pd.DataFrame(data2)
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["Products", "Cities"]
mock_excel_instance.parse.side_effect = [mock_df1, mock_df2]
mock_excel_instance.parse.side_effect = [df1, df2]
mock_excel_file.return_value = mock_excel_instance
file_content = b"fake_excel_content_multiple_sheets"
result = _extract_text_from_excel(file_content)
expected = (
"| Product | Price |\n|---------|-------|\n| Apple | 1.50 |\n\n"
"| City | Population |\n|------|------------|\n| NYC | 8000000 |\n\n"
)
assert result == expected
expected_manual1 = "| Product Name | Price |\n| ------------ | ----- |\n\
| Apple Red | 1.5 |\n| Banana Yellow | 0.99 |\n\n"
expected_manual2 = "| City Name | Population |\n| --------- | ---------- |\n\
| New York | 8000000 |\n| Los Angeles | 3900000 |\n\n"
assert expected_manual1 in result
assert expected_manual2 in result
assert mock_excel_instance.parse.call_count == 2
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_empty_sheets(mock_excel_file):
"""Test extracting text from Excel file with empty sheets."""
# Mock empty DataFrame
mock_df = Mock()
mock_df.dropna = Mock()
mock_df.to_markdown.return_value = ""
# Empty excel
df = pd.DataFrame()
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["EmptySheet"]
mock_excel_instance.parse.return_value = mock_df
mock_excel_instance.parse.return_value = df
mock_excel_file.return_value = mock_excel_instance
file_content = b"fake_excel_empty_content"
result = _extract_text_from_excel(file_content)
expected = "\n\n"
expected = "| |\n| |\n\n"
assert result == expected
mock_excel_instance.parse.assert_called_once_with(sheet_name="EmptySheet")
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_sheet_parse_error(mock_excel_file):
"""Test handling of sheet parsing errors - should continue with other sheets."""
# Mock DataFrames - one successful, one that raises exception
mock_df_success = Mock()
mock_df_success.dropna = Mock()
mock_df_success.to_markdown.return_value = "| Data | Value |\n|------|-------|\n| Test | 123 |"
# Test error
data = {"Data": ["Test"], "Value": [123]}
df = pd.DataFrame(data)
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["GoodSheet", "BadSheet"]
mock_excel_instance.parse.side_effect = [mock_df_success, Exception("Parse error")]
mock_excel_instance.parse.side_effect = [df, Exception("Parse error")]
mock_excel_file.return_value = mock_excel_instance
file_content = b"fake_excel_mixed_content"
result = _extract_text_from_excel(file_content)
expected = "| Data | Value |\n|------|-------|\n| Test | 123 |\n\n"
assert result == expected
expected_manual = "| Data | Value |\n| ---- | ----- |\n| Test | 123 |\n\n"
assert expected_manual == result
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_file_error(mock_excel_file):
"""Test handling of Excel file reading errors."""
mock_excel_file.side_effect = Exception("Invalid Excel file")
file_content = b"invalid_excel_content"
with pytest.raises(Exception) as exc_info:
_extract_text_from_excel(file_content)
# Note: The function should raise TextExtractionError, but since it's not imported in the test,
# we check for the general Exception pattern
assert "Failed to extract text from Excel file" in str(exc_info.value)
assert mock_excel_instance.parse.call_count == 2
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_io_bytesio_usage(mock_excel_file):
"""Test that BytesIO is properly used with the file content."""
import io
# Mock DataFrame
mock_df = Mock()
mock_df.dropna = Mock()
mock_df.to_markdown.return_value = "| Test | Data |\n|------|------|\n| 1 | A |"
# Test bytesio
data = {"Test": [1], "Data": ["A"]}
df = pd.DataFrame(data)
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["TestSheet"]
mock_excel_instance.parse.return_value = mock_df
mock_excel_instance.parse.return_value = df
mock_excel_file.return_value = mock_excel_instance
file_content = b"test_excel_bytes"
result = _extract_text_from_excel(file_content)
# Verify that ExcelFile was called with a BytesIO object
mock_excel_file.assert_called_once()
call_args = mock_excel_file.call_args[0][0]
assert isinstance(call_args, io.BytesIO)
call_arg = mock_excel_file.call_args[0][0]
assert isinstance(call_arg, io.BytesIO)
expected = "| Test | Data |\n|------|------|\n| 1 | A |\n\n"
assert result == expected
expected_manual = "| Test | Data |\n| ---- | ---- |\n| 1 | A |\n\n"
assert expected_manual == result
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_all_sheets_fail(mock_excel_file):
"""Test when all sheets fail to parse - should return empty string."""
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["BadSheet1", "BadSheet2"]
@@ -335,29 +326,6 @@ def test_extract_text_from_excel_all_sheets_fail(mock_excel_file):
file_content = b"fake_excel_all_bad_sheets"
result = _extract_text_from_excel(file_content)
# Should return empty string when all sheets fail
assert result == ""
@patch("pandas.ExcelFile")
def test_extract_text_from_excel_markdown_formatting(mock_excel_file):
"""Test that markdown formatting parameters are correctly applied."""
# Mock DataFrame
mock_df = Mock()
mock_df.dropna = Mock()
mock_df.to_markdown.return_value = "| Float | Int |\n|-------|-----|\n| 123456.78 | 42 |"
# Mock ExcelFile
mock_excel_instance = Mock()
mock_excel_instance.sheet_names = ["NumberSheet"]
mock_excel_instance.parse.return_value = mock_df
mock_excel_file.return_value = mock_excel_instance
file_content = b"fake_excel_numbers"
result = _extract_text_from_excel(file_content)
# Verify to_markdown was called with correct parameters
mock_df.to_markdown.assert_called_once_with(index=False, floatfmt="")
expected = "| Float | Int |\n|-------|-----|\n| 123456.78 | 42 |\n\n"
assert result == expected
assert mock_excel_instance.parse.call_count == 2