feat: support tencent vector db (#3568)
This commit is contained in:
0
api/core/rag/datasource/vdb/tencent/__init__.py
Normal file
0
api/core/rag/datasource/vdb/tencent/__init__.py
Normal file
227
api/core/rag/datasource/vdb/tencent/tencent_vector.py
Normal file
227
api/core/rag/datasource/vdb/tencent/tencent_vector.py
Normal file
@@ -0,0 +1,227 @@
|
||||
import json
|
||||
from typing import Any, Optional
|
||||
|
||||
from flask import current_app
|
||||
from pydantic import BaseModel
|
||||
from tcvectordb import VectorDBClient
|
||||
from tcvectordb.model import document, enum
|
||||
from tcvectordb.model import index as vdb_index
|
||||
from tcvectordb.model.document import Filter
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class TencentConfig(BaseModel):
|
||||
url: str
|
||||
api_key: Optional[str]
|
||||
timeout: float = 30
|
||||
username: Optional[str]
|
||||
database: Optional[str]
|
||||
index_type: str = "HNSW"
|
||||
metric_type: str = "L2"
|
||||
shard: int = 1,
|
||||
replicas: int = 2,
|
||||
|
||||
def to_tencent_params(self):
|
||||
return {
|
||||
'url': self.url,
|
||||
'username': self.username,
|
||||
'key': self.api_key,
|
||||
'timeout': self.timeout
|
||||
}
|
||||
|
||||
|
||||
class TencentVector(BaseVector):
|
||||
field_id: str = "id"
|
||||
field_vector: str = "vector"
|
||||
field_text: str = "text"
|
||||
field_metadata: str = "metadata"
|
||||
|
||||
def __init__(self, collection_name: str, config: TencentConfig):
|
||||
super().__init__(collection_name)
|
||||
self._client_config = config
|
||||
self._client = VectorDBClient(**self._client_config.to_tencent_params())
|
||||
self._db = self._init_database()
|
||||
|
||||
def _init_database(self):
|
||||
exists = False
|
||||
for db in self._client.list_databases():
|
||||
if db.database_name == self._client_config.database:
|
||||
exists = True
|
||||
break
|
||||
if exists:
|
||||
return self._client.database(self._client_config.database)
|
||||
else:
|
||||
return self._client.create_database(database_name=self._client_config.database)
|
||||
|
||||
def get_type(self) -> str:
|
||||
return 'tencent'
|
||||
|
||||
def to_index_struct(self) -> dict:
|
||||
return {
|
||||
"type": self.get_type(),
|
||||
"vector_store": {"class_prefix": self._collection_name}
|
||||
}
|
||||
|
||||
def _has_collection(self) -> bool:
|
||||
collections = self._db.list_collections()
|
||||
for collection in collections:
|
||||
if collection.collection_name == self._collection_name:
|
||||
return True
|
||||
return False
|
||||
|
||||
def _create_collection(self, dimension: int) -> None:
|
||||
lock_name = 'vector_indexing_lock_{}'.format(self._collection_name)
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name)
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
|
||||
if self._has_collection():
|
||||
return
|
||||
|
||||
self.delete()
|
||||
index_type = None
|
||||
for k, v in enum.IndexType.__members__.items():
|
||||
if k == self._client_config.index_type:
|
||||
index_type = v
|
||||
if index_type is None:
|
||||
raise ValueError("unsupported index_type")
|
||||
metric_type = None
|
||||
for k, v in enum.MetricType.__members__.items():
|
||||
if k == self._client_config.metric_type:
|
||||
metric_type = v
|
||||
if metric_type is None:
|
||||
raise ValueError("unsupported metric_type")
|
||||
params = vdb_index.HNSWParams(m=16, efconstruction=200)
|
||||
index = vdb_index.Index(
|
||||
vdb_index.FilterIndex(
|
||||
self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY
|
||||
),
|
||||
vdb_index.VectorIndex(
|
||||
self.field_vector,
|
||||
dimension,
|
||||
index_type,
|
||||
metric_type,
|
||||
params,
|
||||
),
|
||||
vdb_index.FilterIndex(
|
||||
self.field_text, enum.FieldType.String, enum.IndexType.FILTER
|
||||
),
|
||||
vdb_index.FilterIndex(
|
||||
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
|
||||
),
|
||||
)
|
||||
|
||||
self._db.create_collection(
|
||||
name=self._collection_name,
|
||||
shard=self._client_config.shard,
|
||||
replicas=self._client_config.replicas,
|
||||
description="Collection for Dify",
|
||||
index=index,
|
||||
)
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
self._create_collection(len(embeddings[0]))
|
||||
self.add_texts(texts, embeddings)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
texts = [doc.page_content for doc in documents]
|
||||
metadatas = [doc.metadata for doc in documents]
|
||||
total_count = len(embeddings)
|
||||
docs = []
|
||||
for id in range(0, total_count):
|
||||
if metadatas is None:
|
||||
continue
|
||||
metadata = json.dumps(metadatas[id])
|
||||
doc = document.Document(
|
||||
id=metadatas[id]["doc_id"],
|
||||
vector=embeddings[id],
|
||||
text=texts[id],
|
||||
metadata=metadata,
|
||||
)
|
||||
docs.append(doc)
|
||||
self._db.collection(self._collection_name).upsert(docs, self._client_config.timeout)
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
docs = self._db.collection(self._collection_name).query(document_ids=[id])
|
||||
if docs and len(docs) > 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
self._db.collection(self._collection_name).delete(document_ids=ids)
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
self._db.collection(self._collection_name).delete(filter=Filter(Filter.In(key, [value])))
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
|
||||
res = self._db.collection(self._collection_name).search(vectors=[query_vector],
|
||||
params=document.HNSWSearchParams(
|
||||
ef=kwargs.get("ef", 10)),
|
||||
retrieve_vector=False,
|
||||
limit=kwargs.get('top_k', 4),
|
||||
timeout=self._client_config.timeout,
|
||||
)
|
||||
score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0
|
||||
return self._get_search_res(res, score_threshold)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
return []
|
||||
|
||||
def _get_search_res(self, res, score_threshold):
|
||||
docs = []
|
||||
if res is None or len(res) == 0:
|
||||
return docs
|
||||
|
||||
for result in res[0]:
|
||||
meta = result.get(self.field_metadata)
|
||||
if meta is not None:
|
||||
meta = json.loads(meta)
|
||||
score = 1 - result.get("score", 0.0)
|
||||
if score > score_threshold:
|
||||
meta["score"] = score
|
||||
doc = Document(page_content=result.get(self.field_text), metadata=meta)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def delete(self) -> None:
|
||||
self._db.drop_collection(name=self._collection_name)
|
||||
|
||||
|
||||
|
||||
|
||||
class TencentVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TencentVector:
|
||||
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
collection_name = class_prefix.lower()
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
dataset.index_struct = json.dumps(
|
||||
self.gen_index_struct_dict(VectorType.TIDB_VECTOR, collection_name))
|
||||
|
||||
config = current_app.config
|
||||
return TencentVector(
|
||||
collection_name=collection_name,
|
||||
config=TencentConfig(
|
||||
url=config.get('TENCENT_VECTOR_DB_URL'),
|
||||
api_key=config.get('TENCENT_VECTOR_DB_API_KEY'),
|
||||
timeout=config.get('TENCENT_VECTOR_DB_TIMEOUT'),
|
||||
username=config.get('TENCENT_VECTOR_DB_USERNAME'),
|
||||
database=config.get('TENCENT_VECTOR_DB_DATABASE'),
|
||||
shard=config.get('TENCENT_VECTOR_DB_SHARD'),
|
||||
replicas=config.get('TENCENT_VECTOR_DB_REPLICAS'),
|
||||
)
|
||||
)
|
@@ -39,7 +39,6 @@ class Vector:
|
||||
def _init_vector(self) -> BaseVector:
|
||||
config = current_app.config
|
||||
vector_type = config.get('VECTOR_STORE')
|
||||
|
||||
if self._dataset.index_struct_dict:
|
||||
vector_type = self._dataset.index_struct_dict['type']
|
||||
|
||||
@@ -76,6 +75,9 @@ class Vector:
|
||||
case VectorType.WEAVIATE:
|
||||
from core.rag.datasource.vdb.weaviate.weaviate_vector import WeaviateVectorFactory
|
||||
return WeaviateVectorFactory
|
||||
case VectorType.TENCENT:
|
||||
from core.rag.datasource.vdb.tencent.tencent_vector import TencentVectorFactory
|
||||
return TencentVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
@@ -10,3 +10,4 @@ class VectorType(str, Enum):
|
||||
RELYT = 'relyt'
|
||||
TIDB_VECTOR = 'tidb_vector'
|
||||
WEAVIATE = 'weaviate'
|
||||
TENCENT = 'tencent'
|
||||
|
Reference in New Issue
Block a user