feat: [backend] vision support (#1510)
Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
This commit is contained in:
@@ -8,7 +8,7 @@ from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.schema import BaseMessage
|
||||
|
||||
from core.model_providers.models.entity.model_params import ModelMode
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages
|
||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages, PromptMessageFile
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.llm.baichuan_model import BaichuanModel
|
||||
from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
|
||||
@@ -16,32 +16,59 @@ from core.model_providers.models.llm.openllm_model import OpenLLMModel
|
||||
from core.model_providers.models.llm.xinference_model import XinferenceModel
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
from models.model import AppModelConfig
|
||||
|
||||
|
||||
class AppMode(enum.Enum):
|
||||
COMPLETION = 'completion'
|
||||
CHAT = 'chat'
|
||||
|
||||
|
||||
class PromptTransform:
|
||||
def get_prompt(self, mode: str,
|
||||
pre_prompt: str, inputs: dict,
|
||||
def get_prompt(self,
|
||||
app_mode: str,
|
||||
app_model_config: AppModelConfig,
|
||||
pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: List[PromptMessageFile],
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> \
|
||||
Tuple[List[PromptMessage], Optional[List[str]]]:
|
||||
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance))
|
||||
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance)
|
||||
return [PromptMessage(content=prompt)], stops
|
||||
model_mode = app_model_config.model_dict['mode']
|
||||
|
||||
app_mode_enum = AppMode(app_mode)
|
||||
model_mode_enum = ModelMode(model_mode)
|
||||
|
||||
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(app_mode, model_instance))
|
||||
|
||||
if app_mode_enum == AppMode.CHAT and model_mode_enum == ModelMode.CHAT:
|
||||
stops = None
|
||||
|
||||
prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(prompt_rules, pre_prompt, inputs,
|
||||
query, context, memory,
|
||||
model_instance, files)
|
||||
else:
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
prompt_messages = self._get_simple_others_prompt_messages(prompt_rules, pre_prompt, inputs, query, context,
|
||||
memory,
|
||||
model_instance, files)
|
||||
return prompt_messages, stops
|
||||
|
||||
def get_advanced_prompt(self,
|
||||
app_mode: str,
|
||||
app_model_config: AppModelConfig,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: List[PromptMessageFile],
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
|
||||
def get_advanced_prompt(self,
|
||||
app_mode: str,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
|
||||
model_mode = app_model_config.model_dict['mode']
|
||||
|
||||
app_mode_enum = AppMode(app_mode)
|
||||
@@ -51,15 +78,20 @@ class PromptTransform:
|
||||
|
||||
if app_mode_enum == AppMode.CHAT:
|
||||
if model_mode_enum == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
|
||||
prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query,
|
||||
files, context, memory,
|
||||
model_instance)
|
||||
elif model_mode_enum == ModelMode.CHAT:
|
||||
prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
|
||||
prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, files,
|
||||
context, memory, model_instance)
|
||||
elif app_mode_enum == AppMode.COMPLETION:
|
||||
if model_mode_enum == ModelMode.CHAT:
|
||||
prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context)
|
||||
prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs,
|
||||
files, context)
|
||||
elif model_mode_enum == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context)
|
||||
|
||||
prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs,
|
||||
files, context)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
|
||||
@@ -71,7 +103,7 @@ class PromptTransform:
|
||||
return external_context[memory_key]
|
||||
|
||||
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
|
||||
max_token_limit: int) -> List[PromptMessage]:
|
||||
max_token_limit: int) -> List[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
memory.max_token_limit = max_token_limit
|
||||
memory.return_messages = True
|
||||
@@ -79,7 +111,7 @@ class PromptTransform:
|
||||
external_context = memory.load_memory_variables({})
|
||||
memory.return_messages = False
|
||||
return to_prompt_messages(external_context[memory_key])
|
||||
|
||||
|
||||
def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str:
|
||||
# baichuan
|
||||
if isinstance(model_instance, BaichuanModel):
|
||||
@@ -94,13 +126,13 @@ class PromptTransform:
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
||||
|
||||
def _prompt_file_name_for_baichuan(self, mode: str) -> str:
|
||||
if mode == 'completion':
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
|
||||
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(
|
||||
@@ -111,12 +143,53 @@ class PromptTransform:
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, 'r') as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> Tuple[str, Optional[list]]:
|
||||
|
||||
def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM,
|
||||
files: List[PromptMessageFile]) -> List[PromptMessage]:
|
||||
prompt_messages = []
|
||||
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
prompt_messages.append(PromptMessage(type=MessageType.SYSTEM, content=prompt))
|
||||
|
||||
self._append_chat_histories(memory, prompt_messages, model_instance)
|
||||
|
||||
prompt_messages.append(PromptMessage(type=MessageType.USER, content=query, files=files))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_simple_others_prompt_messages(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM,
|
||||
files: List[PromptMessageFile]) -> List[PromptMessage]:
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
@@ -175,16 +248,12 @@ class PromptTransform:
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
return [PromptMessage(content=prompt, files=files)]
|
||||
|
||||
return prompt, stops
|
||||
|
||||
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#context#' in prompt_template.variable_keys:
|
||||
if context:
|
||||
prompt_inputs['#context#'] = context
|
||||
prompt_inputs['#context#'] = context
|
||||
else:
|
||||
prompt_inputs['#context#'] = ''
|
||||
|
||||
@@ -195,17 +264,18 @@ class PromptTransform:
|
||||
else:
|
||||
prompt_inputs['#query#'] = ''
|
||||
|
||||
def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
|
||||
prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None:
|
||||
def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
|
||||
prompt_template: PromptTemplateParser, prompt_inputs: dict,
|
||||
model_instance: BaseLLM) -> None:
|
||||
if '#histories#' in prompt_template.variable_keys:
|
||||
if memory:
|
||||
tmp_human_message = PromptBuilder.to_human_message(
|
||||
prompt_content=raw_prompt,
|
||||
inputs={ '#histories#': '', **prompt_inputs }
|
||||
inputs={'#histories#': '', **prompt_inputs}
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
|
||||
|
||||
|
||||
memory.human_prefix = conversation_histories_role['user_prefix']
|
||||
memory.ai_prefix = conversation_histories_role['assistant_prefix']
|
||||
histories = self._get_history_messages_from_memory(memory, rest_tokens)
|
||||
@@ -213,7 +283,8 @@ class PromptTransform:
|
||||
else:
|
||||
prompt_inputs['#histories#'] = ''
|
||||
|
||||
def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None:
|
||||
def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage],
|
||||
model_instance: BaseLLM) -> None:
|
||||
if memory:
|
||||
rest_tokens = self._calculate_rest_token(prompt_messages, model_instance)
|
||||
|
||||
@@ -242,19 +313,19 @@ class PromptTransform:
|
||||
return prompt
|
||||
|
||||
def _get_chat_app_completion_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
|
||||
app_model_config: AppModelConfig,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: List[PromptMessageFile],
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
|
||||
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
|
||||
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
|
||||
|
||||
prompt_messages = []
|
||||
prompt = ''
|
||||
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
@@ -262,28 +333,29 @@ class PromptTransform:
|
||||
|
||||
self._set_query_variable(query, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance)
|
||||
self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs,
|
||||
model_instance)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
|
||||
prompt_messages.append(PromptMessage(type=MessageType.USER, content=prompt, files=files))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_chat_app_chat_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
app_model_config: AppModelConfig,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: List[PromptMessageFile],
|
||||
context: Optional[str],
|
||||
memory: Optional[BaseChatMemory],
|
||||
model_instance: BaseLLM) -> List[PromptMessage]:
|
||||
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item['text']
|
||||
prompt = ''
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
@@ -292,23 +364,23 @@ class PromptTransform:
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
|
||||
|
||||
prompt_messages.append(PromptMessage(type=MessageType(prompt_item['role']), content=prompt))
|
||||
|
||||
self._append_chat_histories(memory, prompt_messages, model_instance)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
|
||||
prompt_messages.append(PromptMessage(type=MessageType.USER, content=query, files=files))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_completion_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
context: Optional[str]) -> List[PromptMessage]:
|
||||
app_model_config: AppModelConfig,
|
||||
inputs: dict,
|
||||
files: List[PromptMessageFile],
|
||||
context: Optional[str]) -> List[PromptMessage]:
|
||||
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
|
||||
|
||||
prompt_messages = []
|
||||
prompt = ''
|
||||
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
@@ -316,21 +388,21 @@ class PromptTransform:
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
|
||||
prompt_messages.append(PromptMessage(type=MessageType(MessageType.USER), content=prompt, files=files))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_chat_model_prompt_messages(self,
|
||||
app_model_config: str,
|
||||
inputs: dict,
|
||||
context: Optional[str]) -> List[PromptMessage]:
|
||||
app_model_config: AppModelConfig,
|
||||
inputs: dict,
|
||||
files: List[PromptMessageFile],
|
||||
context: Optional[str]) -> List[PromptMessage]:
|
||||
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item['text']
|
||||
prompt = ''
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
@@ -339,6 +411,11 @@ class PromptTransform:
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
prompt_messages.append(PromptMessage(type=MessageType(prompt_item['role']), content=prompt))
|
||||
|
||||
for prompt_message in prompt_messages[::-1]:
|
||||
if prompt_message.type == MessageType.USER:
|
||||
prompt_message.files = files
|
||||
break
|
||||
|
||||
return prompt_messages
|
||||
|
Reference in New Issue
Block a user