feat: [backend] vision support (#1510)

Co-authored-by: Garfield Dai <dai.hai@foxmail.com>
This commit is contained in:
takatost
2023-11-13 22:05:46 +08:00
committed by GitHub
parent d0e1ea8f06
commit 41d0a8b295
61 changed files with 1563 additions and 300 deletions

View File

@@ -8,7 +8,7 @@ from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema import BaseMessage
from core.model_providers.models.entity.model_params import ModelMode
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages
from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages, PromptMessageFile
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.llm.baichuan_model import BaichuanModel
from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
@@ -16,32 +16,59 @@ from core.model_providers.models.llm.openllm_model import OpenLLMModel
from core.model_providers.models.llm.xinference_model import XinferenceModel
from core.prompt.prompt_builder import PromptBuilder
from core.prompt.prompt_template import PromptTemplateParser
from models.model import AppModelConfig
class AppMode(enum.Enum):
COMPLETION = 'completion'
CHAT = 'chat'
class PromptTransform:
def get_prompt(self, mode: str,
pre_prompt: str, inputs: dict,
def get_prompt(self,
app_mode: str,
app_model_config: AppModelConfig,
pre_prompt: str,
inputs: dict,
query: str,
files: List[PromptMessageFile],
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> \
Tuple[List[PromptMessage], Optional[List[str]]]:
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance))
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance)
return [PromptMessage(content=prompt)], stops
model_mode = app_model_config.model_dict['mode']
app_mode_enum = AppMode(app_mode)
model_mode_enum = ModelMode(model_mode)
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(app_mode, model_instance))
if app_mode_enum == AppMode.CHAT and model_mode_enum == ModelMode.CHAT:
stops = None
prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(prompt_rules, pre_prompt, inputs,
query, context, memory,
model_instance, files)
else:
stops = prompt_rules.get('stops')
if stops is not None and len(stops) == 0:
stops = None
prompt_messages = self._get_simple_others_prompt_messages(prompt_rules, pre_prompt, inputs, query, context,
memory,
model_instance, files)
return prompt_messages, stops
def get_advanced_prompt(self,
app_mode: str,
app_model_config: AppModelConfig,
inputs: dict,
query: str,
files: List[PromptMessageFile],
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
def get_advanced_prompt(self,
app_mode: str,
app_model_config: str,
inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
model_mode = app_model_config.model_dict['mode']
app_mode_enum = AppMode(app_mode)
@@ -51,15 +78,20 @@ class PromptTransform:
if app_mode_enum == AppMode.CHAT:
if model_mode_enum == ModelMode.COMPLETION:
prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query,
files, context, memory,
model_instance)
elif model_mode_enum == ModelMode.CHAT:
prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, files,
context, memory, model_instance)
elif app_mode_enum == AppMode.COMPLETION:
if model_mode_enum == ModelMode.CHAT:
prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context)
prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs,
files, context)
elif model_mode_enum == ModelMode.COMPLETION:
prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context)
prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs,
files, context)
return prompt_messages
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
@@ -71,7 +103,7 @@ class PromptTransform:
return external_context[memory_key]
def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
max_token_limit: int) -> List[PromptMessage]:
max_token_limit: int) -> List[PromptMessage]:
"""Get memory messages."""
memory.max_token_limit = max_token_limit
memory.return_messages = True
@@ -79,7 +111,7 @@ class PromptTransform:
external_context = memory.load_memory_variables({})
memory.return_messages = False
return to_prompt_messages(external_context[memory_key])
def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str:
# baichuan
if isinstance(model_instance, BaichuanModel):
@@ -94,13 +126,13 @@ class PromptTransform:
return 'common_completion'
else:
return 'common_chat'
def _prompt_file_name_for_baichuan(self, mode: str) -> str:
if mode == 'completion':
return 'baichuan_completion'
else:
return 'baichuan_chat'
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
# Get the absolute path of the subdirectory
prompt_path = os.path.join(
@@ -111,12 +143,53 @@ class PromptTransform:
# Open the JSON file and read its content
with open(json_file_path, 'r') as json_file:
return json.load(json_file)
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> Tuple[str, Optional[list]]:
def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM,
files: List[PromptMessageFile]) -> List[PromptMessage]:
prompt_messages = []
context_prompt_content = ''
if context and 'context_prompt' in prompt_rules:
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
context_prompt_content = prompt_template.format(
{'context': context}
)
pre_prompt_content = ''
if pre_prompt:
prompt_template = PromptTemplateParser(template=pre_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
pre_prompt_content = prompt_template.format(
prompt_inputs
)
prompt = ''
for order in prompt_rules['system_prompt_orders']:
if order == 'context_prompt':
prompt += context_prompt_content
elif order == 'pre_prompt':
prompt += pre_prompt_content
prompt = re.sub(r'<\|.*?\|>', '', prompt)
prompt_messages.append(PromptMessage(type=MessageType.SYSTEM, content=prompt))
self._append_chat_histories(memory, prompt_messages, model_instance)
prompt_messages.append(PromptMessage(type=MessageType.USER, content=query, files=files))
return prompt_messages
def _get_simple_others_prompt_messages(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM,
files: List[PromptMessageFile]) -> List[PromptMessage]:
context_prompt_content = ''
if context and 'context_prompt' in prompt_rules:
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
@@ -175,16 +248,12 @@ class PromptTransform:
prompt = re.sub(r'<\|.*?\|>', '', prompt)
stops = prompt_rules.get('stops')
if stops is not None and len(stops) == 0:
stops = None
return [PromptMessage(content=prompt, files=files)]
return prompt, stops
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
if '#context#' in prompt_template.variable_keys:
if context:
prompt_inputs['#context#'] = context
prompt_inputs['#context#'] = context
else:
prompt_inputs['#context#'] = ''
@@ -195,17 +264,18 @@ class PromptTransform:
else:
prompt_inputs['#query#'] = ''
def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None:
def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
prompt_template: PromptTemplateParser, prompt_inputs: dict,
model_instance: BaseLLM) -> None:
if '#histories#' in prompt_template.variable_keys:
if memory:
tmp_human_message = PromptBuilder.to_human_message(
prompt_content=raw_prompt,
inputs={ '#histories#': '', **prompt_inputs }
inputs={'#histories#': '', **prompt_inputs}
)
rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
memory.human_prefix = conversation_histories_role['user_prefix']
memory.ai_prefix = conversation_histories_role['assistant_prefix']
histories = self._get_history_messages_from_memory(memory, rest_tokens)
@@ -213,7 +283,8 @@ class PromptTransform:
else:
prompt_inputs['#histories#'] = ''
def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None:
def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage],
model_instance: BaseLLM) -> None:
if memory:
rest_tokens = self._calculate_rest_token(prompt_messages, model_instance)
@@ -242,19 +313,19 @@ class PromptTransform:
return prompt
def _get_chat_app_completion_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
app_model_config: AppModelConfig,
inputs: dict,
query: str,
files: List[PromptMessageFile],
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
prompt_messages = []
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
@@ -262,28 +333,29 @@ class PromptTransform:
self._set_query_variable(query, prompt_template, prompt_inputs)
self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance)
self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs,
model_instance)
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
prompt_messages.append(PromptMessage(type=MessageType.USER, content=prompt, files=files))
return prompt_messages
def _get_chat_app_chat_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
query: str,
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
app_model_config: AppModelConfig,
inputs: dict,
query: str,
files: List[PromptMessageFile],
context: Optional[str],
memory: Optional[BaseChatMemory],
model_instance: BaseLLM) -> List[PromptMessage]:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
prompt_messages = []
for prompt_item in raw_prompt_list:
raw_prompt = prompt_item['text']
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
@@ -292,23 +364,23 @@ class PromptTransform:
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
prompt_messages.append(PromptMessage(type=MessageType(prompt_item['role']), content=prompt))
self._append_chat_histories(memory, prompt_messages, model_instance)
prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
prompt_messages.append(PromptMessage(type=MessageType.USER, content=query, files=files))
return prompt_messages
def _get_completion_app_completion_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
context: Optional[str]) -> List[PromptMessage]:
app_model_config: AppModelConfig,
inputs: dict,
files: List[PromptMessageFile],
context: Optional[str]) -> List[PromptMessage]:
raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
prompt_messages = []
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
@@ -316,21 +388,21 @@ class PromptTransform:
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
prompt_messages.append(PromptMessage(type=MessageType(MessageType.USER), content=prompt, files=files))
return prompt_messages
def _get_completion_app_chat_model_prompt_messages(self,
app_model_config: str,
inputs: dict,
context: Optional[str]) -> List[PromptMessage]:
app_model_config: AppModelConfig,
inputs: dict,
files: List[PromptMessageFile],
context: Optional[str]) -> List[PromptMessage]:
raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
prompt_messages = []
for prompt_item in raw_prompt_list:
raw_prompt = prompt_item['text']
prompt = ''
prompt_template = PromptTemplateParser(template=raw_prompt)
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
@@ -339,6 +411,11 @@ class PromptTransform:
prompt = self._format_prompt(prompt_template, prompt_inputs)
prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
return prompt_messages
prompt_messages.append(PromptMessage(type=MessageType(prompt_item['role']), content=prompt))
for prompt_message in prompt_messages[::-1]:
if prompt_message.type == MessageType.USER:
prompt_message.files = files
break
return prompt_messages