|
|
|
@@ -0,0 +1,132 @@
|
|
|
|
|
import time
|
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
|
|
import dashscope
|
|
|
|
|
|
|
|
|
|
from core.model_runtime.entities.model_entities import PriceType
|
|
|
|
|
from core.model_runtime.entities.text_embedding_entities import (
|
|
|
|
|
EmbeddingUsage,
|
|
|
|
|
TextEmbeddingResult,
|
|
|
|
|
)
|
|
|
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
|
|
|
from core.model_runtime.model_providers.__base.text_embedding_model import (
|
|
|
|
|
TextEmbeddingModel,
|
|
|
|
|
)
|
|
|
|
|
from core.model_runtime.model_providers.tongyi._common import _CommonTongyi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
|
|
|
|
|
"""
|
|
|
|
|
Model class for Tongyi text embedding model.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _invoke(
|
|
|
|
|
self,
|
|
|
|
|
model: str,
|
|
|
|
|
credentials: dict,
|
|
|
|
|
texts: list[str],
|
|
|
|
|
user: Optional[str] = None,
|
|
|
|
|
) -> TextEmbeddingResult:
|
|
|
|
|
"""
|
|
|
|
|
Invoke text embedding model
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: model credentials
|
|
|
|
|
:param texts: texts to embed
|
|
|
|
|
:param user: unique user id
|
|
|
|
|
:return: embeddings result
|
|
|
|
|
"""
|
|
|
|
|
credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
|
|
dashscope.api_key = credentials_kwargs["dashscope_api_key"]
|
|
|
|
|
embeddings, embedding_used_tokens = self.embed_documents(model, texts)
|
|
|
|
|
|
|
|
|
|
return TextEmbeddingResult(
|
|
|
|
|
embeddings=embeddings,
|
|
|
|
|
usage=self._calc_response_usage(model, credentials_kwargs, embedding_used_tokens),
|
|
|
|
|
model=model
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
|
|
|
|
"""
|
|
|
|
|
Get number of tokens for given prompt messages
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: model credentials
|
|
|
|
|
:param texts: texts to embed
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
if len(texts) == 0:
|
|
|
|
|
return 0
|
|
|
|
|
total_num_tokens = 0
|
|
|
|
|
for text in texts:
|
|
|
|
|
total_num_tokens += self._get_num_tokens_by_gpt2(text)
|
|
|
|
|
|
|
|
|
|
return total_num_tokens
|
|
|
|
|
|
|
|
|
|
def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Validate model credentials
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: model credentials
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
# transform credentials to kwargs for model instance
|
|
|
|
|
credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
|
|
dashscope.api_key = credentials_kwargs["dashscope_api_key"]
|
|
|
|
|
# call embedding model
|
|
|
|
|
self.embed_documents(model=model, texts=["ping"])
|
|
|
|
|
except Exception as ex:
|
|
|
|
|
raise CredentialsValidateFailedError(str(ex))
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def embed_documents(model: str, texts: list[str]) -> tuple[list[list[float]], int]:
|
|
|
|
|
"""Call out to Tongyi's embedding endpoint.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
texts: The list of texts to embed.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of embeddings, one for each text, and tokens usage.
|
|
|
|
|
"""
|
|
|
|
|
embeddings = []
|
|
|
|
|
embedding_used_tokens = 0
|
|
|
|
|
for text in texts:
|
|
|
|
|
response = dashscope.TextEmbedding.call(model=model, input=text, text_type="document")
|
|
|
|
|
data = response.output["embeddings"][0]
|
|
|
|
|
embeddings.append(data["embedding"])
|
|
|
|
|
embedding_used_tokens += response.usage["total_tokens"]
|
|
|
|
|
|
|
|
|
|
return [list(map(float, e)) for e in embeddings], embedding_used_tokens
|
|
|
|
|
|
|
|
|
|
def _calc_response_usage(
|
|
|
|
|
self, model: str, credentials: dict, tokens: int
|
|
|
|
|
) -> EmbeddingUsage:
|
|
|
|
|
"""
|
|
|
|
|
Calculate response usage
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param tokens: input tokens
|
|
|
|
|
:return: usage
|
|
|
|
|
"""
|
|
|
|
|
# get input price info
|
|
|
|
|
input_price_info = self.get_price(
|
|
|
|
|
model=model,
|
|
|
|
|
credentials=credentials,
|
|
|
|
|
price_type=PriceType.INPUT,
|
|
|
|
|
tokens=tokens
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# transform usage
|
|
|
|
|
usage = EmbeddingUsage(
|
|
|
|
|
tokens=tokens,
|
|
|
|
|
total_tokens=tokens,
|
|
|
|
|
unit_price=input_price_info.unit_price,
|
|
|
|
|
price_unit=input_price_info.unit,
|
|
|
|
|
total_price=input_price_info.total_amount,
|
|
|
|
|
currency=input_price_info.currency,
|
|
|
|
|
latency=time.perf_counter() - self.started_at
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return usage
|