Signed-off-by: yihong0618 <zouzou0208@gmail.com>
This commit is contained in:
@@ -92,7 +92,10 @@ class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
|
||||
average = embeddings_batch[0]
|
||||
else:
|
||||
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||||
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||||
embedding = (average / np.linalg.norm(average)).tolist()
|
||||
if np.isnan(embedding).any():
|
||||
raise ValueError("Normalized embedding is nan please try again")
|
||||
embeddings[i] = embedding
|
||||
|
||||
# calc usage
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)
|
||||
|
@@ -88,7 +88,10 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
|
||||
average = embeddings_batch[0]
|
||||
else:
|
||||
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||||
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||||
embedding = (average / np.linalg.norm(average)).tolist()
|
||||
if np.isnan(embedding).any():
|
||||
raise ValueError("Normalized embedding is nan please try again")
|
||||
embeddings[i] = embedding
|
||||
|
||||
# calc usage
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)
|
||||
|
@@ -97,7 +97,10 @@ class OpenAITextEmbeddingModel(_CommonOpenAI, TextEmbeddingModel):
|
||||
average = embeddings_batch[0]
|
||||
else:
|
||||
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||||
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||||
embedding = (average / np.linalg.norm(average)).tolist()
|
||||
if np.isnan(embedding).any():
|
||||
raise ValueError("Normalized embedding is nan please try again")
|
||||
embeddings[i] = embedding
|
||||
|
||||
# calc usage
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)
|
||||
|
@@ -100,7 +100,10 @@ class UpstageTextEmbeddingModel(_CommonUpstage, TextEmbeddingModel):
|
||||
average = embeddings_batch[0]
|
||||
else:
|
||||
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||||
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||||
embedding = (average / np.linalg.norm(average)).tolist()
|
||||
if np.isnan(embedding).any():
|
||||
raise ValueError("Normalized embedding is nan please try again")
|
||||
embeddings[i] = embedding
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)
|
||||
|
||||
|
Reference in New Issue
Block a user