feat(workflow): domain model for workflow node execution (#19430)
Signed-off-by: -LAN- <laipz8200@outlook.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
from collections.abc import Mapping
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
from typing import Any, Optional, Union
|
||||
@@ -155,10 +156,10 @@ class LangfuseSpan(BaseModel):
|
||||
description="The status message of the span. Additional field for context of the event. E.g. the error "
|
||||
"message of an error event.",
|
||||
)
|
||||
input: Optional[Union[str, dict[str, Any], list, None]] = Field(
|
||||
input: Optional[Union[str, Mapping[str, Any], list, None]] = Field(
|
||||
default=None, description="The input of the span. Can be any JSON object."
|
||||
)
|
||||
output: Optional[Union[str, dict[str, Any], list, None]] = Field(
|
||||
output: Optional[Union[str, Mapping[str, Any], list, None]] = Field(
|
||||
default=None, description="The output of the span. Can be any JSON object."
|
||||
)
|
||||
version: Optional[str] = Field(
|
||||
|
@@ -1,11 +1,10 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Optional
|
||||
|
||||
from langfuse import Langfuse # type: ignore
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
from core.ops.entities.config_entity import LangfuseConfig
|
||||
@@ -30,8 +29,9 @@ from core.ops.langfuse_trace.entities.langfuse_trace_entity import (
|
||||
)
|
||||
from core.ops.utils import filter_none_values
|
||||
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from extensions.ext_database import db
|
||||
from models.model import EndUser
|
||||
from models import Account, App, EndUser, WorkflowNodeExecutionTriggeredFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -113,8 +113,29 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
|
||||
# through workflow_run_id get all_nodes_execution using repository
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
# Find the app's creator account
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
# Get the app to find its creator
|
||||
app_id = trace_info.metadata.get("app_id")
|
||||
if not app_id:
|
||||
raise ValueError("No app_id found in trace_info metadata")
|
||||
|
||||
app = session.query(App).filter(App.id == app_id).first()
|
||||
if not app:
|
||||
raise ValueError(f"App with id {app_id} not found")
|
||||
|
||||
if not app.created_by:
|
||||
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
|
||||
|
||||
service_account = session.query(Account).filter(Account.id == app.created_by).first()
|
||||
if not service_account:
|
||||
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
|
||||
|
||||
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
|
||||
session_factory=session_factory, tenant_id=trace_info.tenant_id
|
||||
session_factory=session_factory,
|
||||
user=service_account,
|
||||
app_id=trace_info.metadata.get("app_id"),
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
# Get all executions for this workflow run
|
||||
@@ -124,23 +145,22 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
|
||||
for node_execution in workflow_node_executions:
|
||||
node_execution_id = node_execution.id
|
||||
tenant_id = node_execution.tenant_id
|
||||
app_id = node_execution.app_id
|
||||
tenant_id = trace_info.tenant_id # Use from trace_info instead
|
||||
app_id = trace_info.metadata.get("app_id") # Use from trace_info instead
|
||||
node_name = node_execution.title
|
||||
node_type = node_execution.node_type
|
||||
status = node_execution.status
|
||||
if node_type == "llm":
|
||||
inputs = (
|
||||
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
|
||||
)
|
||||
if node_type == NodeType.LLM:
|
||||
inputs = node_execution.process_data.get("prompts", {}) if node_execution.process_data else {}
|
||||
else:
|
||||
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
|
||||
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
|
||||
inputs = node_execution.inputs if node_execution.inputs else {}
|
||||
outputs = node_execution.outputs if node_execution.outputs else {}
|
||||
created_at = node_execution.created_at or datetime.now()
|
||||
elapsed_time = node_execution.elapsed_time
|
||||
finished_at = created_at + timedelta(seconds=elapsed_time)
|
||||
|
||||
metadata = json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
|
||||
execution_metadata = node_execution.metadata if node_execution.metadata else {}
|
||||
metadata = {str(k): v for k, v in execution_metadata.items()}
|
||||
metadata.update(
|
||||
{
|
||||
"workflow_run_id": trace_info.workflow_run_id,
|
||||
@@ -152,7 +172,7 @@ class LangFuseDataTrace(BaseTraceInstance):
|
||||
"status": status,
|
||||
}
|
||||
)
|
||||
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
|
||||
process_data = node_execution.process_data if node_execution.process_data else {}
|
||||
model_provider = process_data.get("model_provider", None)
|
||||
model_name = process_data.get("model_name", None)
|
||||
if model_provider is not None and model_name is not None:
|
||||
|
@@ -1,3 +1,4 @@
|
||||
from collections.abc import Mapping
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
from typing import Any, Optional, Union
|
||||
@@ -30,8 +31,8 @@ class LangSmithMultiModel(BaseModel):
|
||||
|
||||
class LangSmithRunModel(LangSmithTokenUsage, LangSmithMultiModel):
|
||||
name: Optional[str] = Field(..., description="Name of the run")
|
||||
inputs: Optional[Union[str, dict[str, Any], list, None]] = Field(None, description="Inputs of the run")
|
||||
outputs: Optional[Union[str, dict[str, Any], list, None]] = Field(None, description="Outputs of the run")
|
||||
inputs: Optional[Union[str, Mapping[str, Any], list, None]] = Field(None, description="Inputs of the run")
|
||||
outputs: Optional[Union[str, Mapping[str, Any], list, None]] = Field(None, description="Outputs of the run")
|
||||
run_type: LangSmithRunType = Field(..., description="Type of the run")
|
||||
start_time: Optional[datetime | str] = Field(None, description="Start time of the run")
|
||||
end_time: Optional[datetime | str] = Field(None, description="End time of the run")
|
||||
|
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
@@ -7,7 +6,7 @@ from typing import Optional, cast
|
||||
|
||||
from langsmith import Client
|
||||
from langsmith.schemas import RunBase
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
from core.ops.entities.config_entity import LangSmithConfig
|
||||
@@ -29,8 +28,10 @@ from core.ops.langsmith_trace.entities.langsmith_trace_entity import (
|
||||
)
|
||||
from core.ops.utils import filter_none_values, generate_dotted_order
|
||||
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
|
||||
from core.workflow.entities.node_entities import NodeRunMetadataKey
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from extensions.ext_database import db
|
||||
from models.model import EndUser, MessageFile
|
||||
from models import Account, App, EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -137,8 +138,29 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
|
||||
# through workflow_run_id get all_nodes_execution using repository
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
# Find the app's creator account
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
# Get the app to find its creator
|
||||
app_id = trace_info.metadata.get("app_id")
|
||||
if not app_id:
|
||||
raise ValueError("No app_id found in trace_info metadata")
|
||||
|
||||
app = session.query(App).filter(App.id == app_id).first()
|
||||
if not app:
|
||||
raise ValueError(f"App with id {app_id} not found")
|
||||
|
||||
if not app.created_by:
|
||||
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
|
||||
|
||||
service_account = session.query(Account).filter(Account.id == app.created_by).first()
|
||||
if not service_account:
|
||||
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
|
||||
|
||||
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
|
||||
session_factory=session_factory, tenant_id=trace_info.tenant_id, app_id=trace_info.metadata.get("app_id")
|
||||
session_factory=session_factory,
|
||||
user=service_account,
|
||||
app_id=trace_info.metadata.get("app_id"),
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
# Get all executions for this workflow run
|
||||
@@ -148,27 +170,23 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
|
||||
for node_execution in workflow_node_executions:
|
||||
node_execution_id = node_execution.id
|
||||
tenant_id = node_execution.tenant_id
|
||||
app_id = node_execution.app_id
|
||||
tenant_id = trace_info.tenant_id # Use from trace_info instead
|
||||
app_id = trace_info.metadata.get("app_id") # Use from trace_info instead
|
||||
node_name = node_execution.title
|
||||
node_type = node_execution.node_type
|
||||
status = node_execution.status
|
||||
if node_type == "llm":
|
||||
inputs = (
|
||||
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
|
||||
)
|
||||
if node_type == NodeType.LLM:
|
||||
inputs = node_execution.process_data.get("prompts", {}) if node_execution.process_data else {}
|
||||
else:
|
||||
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
|
||||
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
|
||||
inputs = node_execution.inputs if node_execution.inputs else {}
|
||||
outputs = node_execution.outputs if node_execution.outputs else {}
|
||||
created_at = node_execution.created_at or datetime.now()
|
||||
elapsed_time = node_execution.elapsed_time
|
||||
finished_at = created_at + timedelta(seconds=elapsed_time)
|
||||
|
||||
execution_metadata = (
|
||||
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
|
||||
)
|
||||
node_total_tokens = execution_metadata.get("total_tokens", 0)
|
||||
metadata = execution_metadata.copy()
|
||||
execution_metadata = node_execution.metadata if node_execution.metadata else {}
|
||||
node_total_tokens = execution_metadata.get(NodeRunMetadataKey.TOTAL_TOKENS) or 0
|
||||
metadata = {str(key): value for key, value in execution_metadata.items()}
|
||||
metadata.update(
|
||||
{
|
||||
"workflow_run_id": trace_info.workflow_run_id,
|
||||
@@ -181,7 +199,7 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
}
|
||||
)
|
||||
|
||||
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
|
||||
process_data = node_execution.process_data if node_execution.process_data else {}
|
||||
|
||||
if process_data and process_data.get("model_mode") == "chat":
|
||||
run_type = LangSmithRunType.llm
|
||||
@@ -191,7 +209,7 @@ class LangSmithDataTrace(BaseTraceInstance):
|
||||
"ls_model_name": process_data.get("model_name", ""),
|
||||
}
|
||||
)
|
||||
elif node_type == "knowledge-retrieval":
|
||||
elif node_type == NodeType.KNOWLEDGE_RETRIEVAL:
|
||||
run_type = LangSmithRunType.retriever
|
||||
else:
|
||||
run_type = LangSmithRunType.tool
|
||||
|
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
@@ -7,7 +6,7 @@ from typing import Optional, cast
|
||||
|
||||
from opik import Opik, Trace
|
||||
from opik.id_helpers import uuid4_to_uuid7
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
from core.ops.entities.config_entity import OpikConfig
|
||||
@@ -23,8 +22,10 @@ from core.ops.entities.trace_entity import (
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
|
||||
from core.workflow.entities.node_entities import NodeRunMetadataKey
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from extensions.ext_database import db
|
||||
from models.model import EndUser, MessageFile
|
||||
from models import Account, App, EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -150,8 +151,29 @@ class OpikDataTrace(BaseTraceInstance):
|
||||
|
||||
# through workflow_run_id get all_nodes_execution using repository
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
# Find the app's creator account
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
# Get the app to find its creator
|
||||
app_id = trace_info.metadata.get("app_id")
|
||||
if not app_id:
|
||||
raise ValueError("No app_id found in trace_info metadata")
|
||||
|
||||
app = session.query(App).filter(App.id == app_id).first()
|
||||
if not app:
|
||||
raise ValueError(f"App with id {app_id} not found")
|
||||
|
||||
if not app.created_by:
|
||||
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
|
||||
|
||||
service_account = session.query(Account).filter(Account.id == app.created_by).first()
|
||||
if not service_account:
|
||||
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
|
||||
|
||||
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
|
||||
session_factory=session_factory, tenant_id=trace_info.tenant_id, app_id=trace_info.metadata.get("app_id")
|
||||
session_factory=session_factory,
|
||||
user=service_account,
|
||||
app_id=trace_info.metadata.get("app_id"),
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
# Get all executions for this workflow run
|
||||
@@ -161,26 +183,22 @@ class OpikDataTrace(BaseTraceInstance):
|
||||
|
||||
for node_execution in workflow_node_executions:
|
||||
node_execution_id = node_execution.id
|
||||
tenant_id = node_execution.tenant_id
|
||||
app_id = node_execution.app_id
|
||||
tenant_id = trace_info.tenant_id # Use from trace_info instead
|
||||
app_id = trace_info.metadata.get("app_id") # Use from trace_info instead
|
||||
node_name = node_execution.title
|
||||
node_type = node_execution.node_type
|
||||
status = node_execution.status
|
||||
if node_type == "llm":
|
||||
inputs = (
|
||||
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
|
||||
)
|
||||
if node_type == NodeType.LLM:
|
||||
inputs = node_execution.process_data.get("prompts", {}) if node_execution.process_data else {}
|
||||
else:
|
||||
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
|
||||
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
|
||||
inputs = node_execution.inputs if node_execution.inputs else {}
|
||||
outputs = node_execution.outputs if node_execution.outputs else {}
|
||||
created_at = node_execution.created_at or datetime.now()
|
||||
elapsed_time = node_execution.elapsed_time
|
||||
finished_at = created_at + timedelta(seconds=elapsed_time)
|
||||
|
||||
execution_metadata = (
|
||||
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
|
||||
)
|
||||
metadata = execution_metadata.copy()
|
||||
execution_metadata = node_execution.metadata if node_execution.metadata else {}
|
||||
metadata = {str(k): v for k, v in execution_metadata.items()}
|
||||
metadata.update(
|
||||
{
|
||||
"workflow_run_id": trace_info.workflow_run_id,
|
||||
@@ -193,7 +211,7 @@ class OpikDataTrace(BaseTraceInstance):
|
||||
}
|
||||
)
|
||||
|
||||
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
|
||||
process_data = node_execution.process_data if node_execution.process_data else {}
|
||||
|
||||
provider = None
|
||||
model = None
|
||||
@@ -226,7 +244,7 @@ class OpikDataTrace(BaseTraceInstance):
|
||||
parent_span_id = trace_info.workflow_app_log_id or trace_info.workflow_run_id
|
||||
|
||||
if not total_tokens:
|
||||
total_tokens = execution_metadata.get("total_tokens", 0)
|
||||
total_tokens = execution_metadata.get(NodeRunMetadataKey.TOTAL_TOKENS) or 0
|
||||
|
||||
span_data = {
|
||||
"trace_id": opik_trace_id,
|
||||
|
@@ -1,3 +1,4 @@
|
||||
from collections.abc import Mapping
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
@@ -19,8 +20,8 @@ class WeaveMultiModel(BaseModel):
|
||||
class WeaveTraceModel(WeaveTokenUsage, WeaveMultiModel):
|
||||
id: str = Field(..., description="ID of the trace")
|
||||
op: str = Field(..., description="Name of the operation")
|
||||
inputs: Optional[Union[str, dict[str, Any], list, None]] = Field(None, description="Inputs of the trace")
|
||||
outputs: Optional[Union[str, dict[str, Any], list, None]] = Field(None, description="Outputs of the trace")
|
||||
inputs: Optional[Union[str, Mapping[str, Any], list, None]] = Field(None, description="Inputs of the trace")
|
||||
outputs: Optional[Union[str, Mapping[str, Any], list, None]] = Field(None, description="Outputs of the trace")
|
||||
attributes: Optional[Union[str, dict[str, Any], list, None]] = Field(
|
||||
None, description="Metadata and attributes associated with trace"
|
||||
)
|
||||
|
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
@@ -7,6 +6,7 @@ from typing import Any, Optional, cast
|
||||
|
||||
import wandb
|
||||
import weave
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
from core.ops.entities.config_entity import WeaveConfig
|
||||
@@ -22,9 +22,11 @@ from core.ops.entities.trace_entity import (
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from core.ops.weave_trace.entities.weave_trace_entity import WeaveTraceModel
|
||||
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
|
||||
from core.workflow.entities.node_entities import NodeRunMetadataKey
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from extensions.ext_database import db
|
||||
from models.model import EndUser, MessageFile
|
||||
from models.workflow import WorkflowNodeExecution
|
||||
from models import Account, App, EndUser, MessageFile, WorkflowNodeExecutionTriggeredFrom
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -128,58 +130,57 @@ class WeaveDataTrace(BaseTraceInstance):
|
||||
|
||||
self.start_call(workflow_run, parent_run_id=trace_info.message_id)
|
||||
|
||||
# through workflow_run_id get all_nodes_execution
|
||||
workflow_nodes_execution_id_records = (
|
||||
db.session.query(WorkflowNodeExecution.id)
|
||||
.filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)
|
||||
.all()
|
||||
# through workflow_run_id get all_nodes_execution using repository
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
# Find the app's creator account
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
# Get the app to find its creator
|
||||
app_id = trace_info.metadata.get("app_id")
|
||||
if not app_id:
|
||||
raise ValueError("No app_id found in trace_info metadata")
|
||||
|
||||
app = session.query(App).filter(App.id == app_id).first()
|
||||
if not app:
|
||||
raise ValueError(f"App with id {app_id} not found")
|
||||
|
||||
if not app.created_by:
|
||||
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
|
||||
|
||||
service_account = session.query(Account).filter(Account.id == app.created_by).first()
|
||||
if not service_account:
|
||||
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
|
||||
|
||||
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
|
||||
session_factory=session_factory,
|
||||
user=service_account,
|
||||
app_id=trace_info.metadata.get("app_id"),
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
|
||||
for node_execution_id_record in workflow_nodes_execution_id_records:
|
||||
node_execution = (
|
||||
db.session.query(
|
||||
WorkflowNodeExecution.id,
|
||||
WorkflowNodeExecution.tenant_id,
|
||||
WorkflowNodeExecution.app_id,
|
||||
WorkflowNodeExecution.title,
|
||||
WorkflowNodeExecution.node_type,
|
||||
WorkflowNodeExecution.status,
|
||||
WorkflowNodeExecution.inputs,
|
||||
WorkflowNodeExecution.outputs,
|
||||
WorkflowNodeExecution.created_at,
|
||||
WorkflowNodeExecution.elapsed_time,
|
||||
WorkflowNodeExecution.process_data,
|
||||
WorkflowNodeExecution.execution_metadata,
|
||||
)
|
||||
.filter(WorkflowNodeExecution.id == node_execution_id_record.id)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not node_execution:
|
||||
continue
|
||||
# Get all executions for this workflow run
|
||||
workflow_node_executions = workflow_node_execution_repository.get_by_workflow_run(
|
||||
workflow_run_id=trace_info.workflow_run_id
|
||||
)
|
||||
|
||||
for node_execution in workflow_node_executions:
|
||||
node_execution_id = node_execution.id
|
||||
tenant_id = node_execution.tenant_id
|
||||
app_id = node_execution.app_id
|
||||
tenant_id = trace_info.tenant_id # Use from trace_info instead
|
||||
app_id = trace_info.metadata.get("app_id") # Use from trace_info instead
|
||||
node_name = node_execution.title
|
||||
node_type = node_execution.node_type
|
||||
status = node_execution.status
|
||||
if node_type == "llm":
|
||||
inputs = (
|
||||
json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}
|
||||
)
|
||||
if node_type == NodeType.LLM:
|
||||
inputs = node_execution.process_data.get("prompts", {}) if node_execution.process_data else {}
|
||||
else:
|
||||
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
|
||||
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
|
||||
inputs = node_execution.inputs if node_execution.inputs else {}
|
||||
outputs = node_execution.outputs if node_execution.outputs else {}
|
||||
created_at = node_execution.created_at or datetime.now()
|
||||
elapsed_time = node_execution.elapsed_time
|
||||
finished_at = created_at + timedelta(seconds=elapsed_time)
|
||||
|
||||
execution_metadata = (
|
||||
json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
|
||||
)
|
||||
node_total_tokens = execution_metadata.get("total_tokens", 0)
|
||||
attributes = execution_metadata.copy()
|
||||
execution_metadata = node_execution.metadata if node_execution.metadata else {}
|
||||
node_total_tokens = execution_metadata.get(NodeRunMetadataKey.TOTAL_TOKENS) or 0
|
||||
attributes = {str(k): v for k, v in execution_metadata.items()}
|
||||
attributes.update(
|
||||
{
|
||||
"workflow_run_id": trace_info.workflow_run_id,
|
||||
@@ -192,7 +193,7 @@ class WeaveDataTrace(BaseTraceInstance):
|
||||
}
|
||||
)
|
||||
|
||||
process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
|
||||
process_data = node_execution.process_data if node_execution.process_data else {}
|
||||
if process_data and process_data.get("model_mode") == "chat":
|
||||
attributes.update(
|
||||
{
|
||||
|
Reference in New Issue
Block a user