feat: support openllm embedding (#1293)
This commit is contained in:
@@ -0,0 +1,22 @@
|
||||
from core.third_party.langchain.embeddings.openllm_embedding import OpenLLMEmbeddings
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.model_providers.models.embedding.base import BaseEmbedding
|
||||
|
||||
|
||||
class OpenLLMEmbedding(BaseEmbedding):
|
||||
def __init__(self, model_provider: BaseModelProvider, name: str):
|
||||
credentials = model_provider.get_model_credentials(
|
||||
model_name=name,
|
||||
model_type=self.type
|
||||
)
|
||||
|
||||
client = OpenLLMEmbeddings(
|
||||
server_url=credentials['server_url']
|
||||
)
|
||||
|
||||
super().__init__(model_provider, client, name)
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"OpenLLM embedding: {str(ex)}")
|
@@ -1,5 +1,4 @@
|
||||
from core.third_party.langchain.embeddings.xinference_embedding import XinferenceEmbedding as XinferenceEmbeddings
|
||||
from replicate.exceptions import ModelError, ReplicateError
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
@@ -21,7 +20,4 @@ class XinferenceEmbedding(BaseEmbedding):
|
||||
super().__init__(model_provider, client, name)
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
if isinstance(ex, (ModelError, ReplicateError)):
|
||||
return LLMBadRequestError(f"Xinference embedding: {str(ex)}")
|
||||
else:
|
||||
return ex
|
||||
return LLMBadRequestError(f"Xinference embedding: {str(ex)}")
|
||||
|
@@ -2,11 +2,13 @@ import json
|
||||
from typing import Type
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.openllm_embedding import OpenLLMEmbedding
|
||||
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
|
||||
from core.model_providers.models.llm.openllm_model import OpenLLMModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.third_party.langchain.embeddings.openllm_embedding import OpenLLMEmbeddings
|
||||
from core.third_party.langchain.llms.openllm import OpenLLM
|
||||
from models.provider import ProviderType
|
||||
|
||||
@@ -31,6 +33,8 @@ class OpenLLMProvider(BaseModelProvider):
|
||||
"""
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
model_class = OpenLLMModel
|
||||
elif model_type== ModelType.EMBEDDINGS:
|
||||
model_class = OpenLLMEmbedding
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -69,14 +73,21 @@ class OpenLLMProvider(BaseModelProvider):
|
||||
'server_url': credentials['server_url']
|
||||
}
|
||||
|
||||
llm = OpenLLM(
|
||||
llm_kwargs={
|
||||
'max_new_tokens': 10
|
||||
},
|
||||
**credential_kwargs
|
||||
)
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
llm = OpenLLM(
|
||||
llm_kwargs={
|
||||
'max_new_tokens': 10
|
||||
},
|
||||
**credential_kwargs
|
||||
)
|
||||
|
||||
llm("ping")
|
||||
llm("ping")
|
||||
elif model_type == ModelType.EMBEDDINGS:
|
||||
embedding = OpenLLMEmbeddings(
|
||||
**credential_kwargs
|
||||
)
|
||||
|
||||
embedding.embed_query("ping")
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
|
67
api/core/third_party/langchain/embeddings/openllm_embedding.py
vendored
Normal file
67
api/core/third_party/langchain/embeddings/openllm_embedding.py
vendored
Normal file
@@ -0,0 +1,67 @@
|
||||
"""Wrapper around OpenLLM embedding models."""
|
||||
from typing import Any, List, Optional
|
||||
|
||||
import requests
|
||||
from pydantic import BaseModel, Extra
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
|
||||
|
||||
class OpenLLMEmbeddings(BaseModel, Embeddings):
|
||||
"""Wrapper around OpenLLM embedding models.
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
|
||||
server_url: Optional[str] = None
|
||||
"""Optional server URL that currently runs a LLMServer with 'openllm start'."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to OpenLLM's embedding endpoint.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
result = self.invoke_embedding(text=text)
|
||||
embeddings.append(result)
|
||||
|
||||
return [list(map(float, e)) for e in embeddings]
|
||||
|
||||
def invoke_embedding(self, text):
|
||||
params = [
|
||||
text
|
||||
]
|
||||
|
||||
headers = {"Content-Type": "application/json"}
|
||||
response = requests.post(
|
||||
f'{self.server_url}/v1/embeddings',
|
||||
headers=headers,
|
||||
json=params
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
raise ValueError(f"OpenLLM HTTP {response.status_code} error: {response.text}")
|
||||
|
||||
json_response = response.json()
|
||||
return json_response[0]["embeddings"][0]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to OpenLLM's embedding endpoint.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
Reference in New Issue
Block a user