feat: universal chat in explore (#649)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
This commit is contained in:
121
api/core/agent/agent_executor.py
Normal file
121
api/core/agent/agent_executor.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import enum
|
||||
import logging
|
||||
from typing import Union, Optional
|
||||
|
||||
from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
from langchain.tools import BaseTool
|
||||
from pydantic import BaseModel, Extra
|
||||
|
||||
from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
|
||||
from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
|
||||
from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
|
||||
from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
|
||||
from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
|
||||
from langchain.agents import AgentExecutor as LCAgentExecutor
|
||||
|
||||
from core.tool.dataset_retriever_tool import DatasetRetrieverTool
|
||||
|
||||
|
||||
class PlanningStrategy(str, enum.Enum):
|
||||
ROUTER = 'router'
|
||||
REACT = 'react'
|
||||
FUNCTION_CALL = 'function_call'
|
||||
MULTI_FUNCTION_CALL = 'multi_function_call'
|
||||
|
||||
|
||||
class AgentConfiguration(BaseModel):
|
||||
strategy: PlanningStrategy
|
||||
llm: BaseLanguageModel
|
||||
tools: list[BaseTool]
|
||||
summary_llm: BaseLanguageModel
|
||||
memory: Optional[BaseChatMemory] = None
|
||||
callbacks: Callbacks = None
|
||||
max_iterations: int = 6
|
||||
max_execution_time: Optional[float] = None
|
||||
early_stopping_method: str = "generate"
|
||||
# `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class AgentExecuteResult(BaseModel):
|
||||
strategy: PlanningStrategy
|
||||
output: Optional[str]
|
||||
configuration: AgentConfiguration
|
||||
|
||||
|
||||
class AgentExecutor:
|
||||
def __init__(self, configuration: AgentConfiguration):
|
||||
self.configuration = configuration
|
||||
self.agent = self._init_agent()
|
||||
|
||||
def _init_agent(self) -> Union[BaseSingleActionAgent | BaseMultiActionAgent]:
|
||||
if self.configuration.strategy == PlanningStrategy.REACT:
|
||||
agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
output_parser=StructuredChatOutputParser(),
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
|
||||
agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
|
||||
summary_llm=self.configuration.summary_llm,
|
||||
verbose=True
|
||||
)
|
||||
elif self.configuration.strategy == PlanningStrategy.ROUTER:
|
||||
self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
|
||||
agent = MultiDatasetRouterAgent.from_llm_and_tools(
|
||||
llm=self.configuration.llm,
|
||||
tools=self.configuration.tools,
|
||||
extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
|
||||
verbose=True
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
|
||||
|
||||
return agent
|
||||
|
||||
def should_use_agent(self, query: str) -> bool:
|
||||
return self.agent.should_use_agent(query)
|
||||
|
||||
def run(self, query: str) -> AgentExecuteResult:
|
||||
agent_executor = LCAgentExecutor.from_agent_and_tools(
|
||||
agent=self.agent,
|
||||
tools=self.configuration.tools,
|
||||
memory=self.configuration.memory,
|
||||
max_iterations=self.configuration.max_iterations,
|
||||
max_execution_time=self.configuration.max_execution_time,
|
||||
early_stopping_method=self.configuration.early_stopping_method,
|
||||
callbacks=self.configuration.callbacks
|
||||
)
|
||||
|
||||
try:
|
||||
output = agent_executor.run(query)
|
||||
except Exception:
|
||||
logging.exception("agent_executor run failed")
|
||||
output = None
|
||||
|
||||
return AgentExecuteResult(
|
||||
output=output,
|
||||
strategy=self.configuration.strategy,
|
||||
configuration=self.configuration
|
||||
)
|
Reference in New Issue
Block a user