chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425)
This commit is contained in:
@@ -242,7 +242,7 @@ class CouchbaseVector(BaseVector):
|
||||
try:
|
||||
self._cluster.query(query, named_parameters={"doc_ids": ids}).execute()
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
logger.exception(f"Failed to delete documents, ids: {ids}")
|
||||
|
||||
def delete_by_document_id(self, document_id: str):
|
||||
query = f"""
|
||||
|
@@ -79,7 +79,7 @@ class LindormVectorStore(BaseVector):
|
||||
existing_docs = self._client.mget(index=self._collection_name, body={"ids": batch_ids}, _source=False)
|
||||
return {doc["_id"] for doc in existing_docs["docs"] if doc["found"]}
|
||||
except Exception as e:
|
||||
logger.exception(f"Error fetching batch {batch_ids}: {e}")
|
||||
logger.exception(f"Error fetching batch {batch_ids}")
|
||||
return set()
|
||||
|
||||
@retry(stop=stop_after_attempt(3), wait=wait_fixed(60))
|
||||
@@ -96,7 +96,7 @@ class LindormVectorStore(BaseVector):
|
||||
)
|
||||
return {doc["_id"] for doc in existing_docs["docs"] if doc["found"]}
|
||||
except Exception as e:
|
||||
logger.exception(f"Error fetching batch {batch_ids}: {e}")
|
||||
logger.exception(f"Error fetching batch ids: {batch_ids}")
|
||||
return set()
|
||||
|
||||
if ids is None:
|
||||
@@ -177,7 +177,7 @@ class LindormVectorStore(BaseVector):
|
||||
else:
|
||||
logger.warning(f"Index '{self._collection_name}' does not exist. No deletion performed.")
|
||||
except Exception as e:
|
||||
logger.exception(f"Error occurred while deleting the index: {e}")
|
||||
logger.exception(f"Error occurred while deleting the index: {self._collection_name}")
|
||||
raise e
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
@@ -201,7 +201,7 @@ class LindormVectorStore(BaseVector):
|
||||
try:
|
||||
response = self._client.search(index=self._collection_name, body=query)
|
||||
except Exception as e:
|
||||
logger.exception(f"Error executing search: {e}")
|
||||
logger.exception(f"Error executing vector search, query: {query}")
|
||||
raise
|
||||
|
||||
docs_and_scores = []
|
||||
|
@@ -142,7 +142,7 @@ class MyScaleVector(BaseVector):
|
||||
for r in self._client.query(sql).named_results()
|
||||
]
|
||||
except Exception as e:
|
||||
logging.exception(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
||||
logging.exception(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") # noqa:TRY401
|
||||
return []
|
||||
|
||||
def delete(self) -> None:
|
||||
|
@@ -158,7 +158,7 @@ class OpenSearchVector(BaseVector):
|
||||
try:
|
||||
response = self._client.search(index=self._collection_name.lower(), body=query)
|
||||
except Exception as e:
|
||||
logger.exception(f"Error executing search: {e}")
|
||||
logger.exception(f"Error executing vector search, query: {query}")
|
||||
raise
|
||||
|
||||
docs = []
|
||||
|
@@ -69,7 +69,7 @@ class CacheEmbedding(Embeddings):
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception("Failed transform embedding: %s", e)
|
||||
logging.exception("Failed transform embedding")
|
||||
cache_embeddings = []
|
||||
try:
|
||||
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
@@ -89,7 +89,7 @@ class CacheEmbedding(Embeddings):
|
||||
db.session.rollback()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.exception("Failed to embed documents: %s", ex)
|
||||
logger.exception("Failed to embed documents: %s")
|
||||
raise ex
|
||||
|
||||
return text_embeddings
|
||||
@@ -112,7 +112,7 @@ class CacheEmbedding(Embeddings):
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logging.exception(f"Failed to embed query text: {ex}")
|
||||
logging.exception(f"Failed to embed query text '{text[:10]}...({len(text)} chars)'")
|
||||
raise ex
|
||||
|
||||
try:
|
||||
@@ -126,7 +126,7 @@ class CacheEmbedding(Embeddings):
|
||||
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logging.exception("Failed to add embedding to redis %s", ex)
|
||||
logging.exception(f"Failed to add embedding to redis for the text '{text[:10]}...({len(text)} chars)'")
|
||||
raise ex
|
||||
|
||||
return embedding_results
|
||||
|
@@ -229,7 +229,7 @@ class WordExtractor(BaseExtractor):
|
||||
for i in url_pattern.findall(x.text):
|
||||
hyperlinks_url = str(i)
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
logger.exception("Failed to parse HYPERLINK xml")
|
||||
|
||||
def parse_paragraph(paragraph):
|
||||
paragraph_content = []
|
||||
|
@@ -159,7 +159,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
qa_documents.append(qa_document)
|
||||
format_documents.extend(qa_documents)
|
||||
except Exception as e:
|
||||
logging.exception(e)
|
||||
logging.exception("Failed to format qa document")
|
||||
|
||||
all_qa_documents.extend(format_documents)
|
||||
|
||||
|
Reference in New Issue
Block a user