Feat: Add model provider Text Embedding Inference for embedding and rerank (#7132)
This commit is contained in:
@@ -0,0 +1,94 @@
|
||||
|
||||
from api.core.model_runtime.model_providers.huggingface_tei.tei_helper import TeiModelExtraParameter
|
||||
|
||||
|
||||
class MockTEIClass:
|
||||
@staticmethod
|
||||
def get_tei_extra_parameter(server_url: str, model_name: str) -> TeiModelExtraParameter:
|
||||
# During mock, we don't have a real server to query, so we just return a dummy value
|
||||
if 'rerank' in model_name:
|
||||
model_type = 'reranker'
|
||||
else:
|
||||
model_type = 'embedding'
|
||||
|
||||
return TeiModelExtraParameter(model_type=model_type, max_input_length=512, max_client_batch_size=1)
|
||||
|
||||
@staticmethod
|
||||
def invoke_tokenize(server_url: str, texts: list[str]) -> list[list[dict]]:
|
||||
# Use space as token separator, and split the text into tokens
|
||||
tokenized_texts = []
|
||||
for text in texts:
|
||||
tokens = text.split(' ')
|
||||
current_index = 0
|
||||
tokenized_text = []
|
||||
for idx, token in enumerate(tokens):
|
||||
s_token = {
|
||||
'id': idx,
|
||||
'text': token,
|
||||
'special': False,
|
||||
'start': current_index,
|
||||
'stop': current_index + len(token),
|
||||
}
|
||||
current_index += len(token) + 1
|
||||
tokenized_text.append(s_token)
|
||||
tokenized_texts.append(tokenized_text)
|
||||
return tokenized_texts
|
||||
|
||||
@staticmethod
|
||||
def invoke_embeddings(server_url: str, texts: list[str]) -> dict:
|
||||
# {
|
||||
# "object": "list",
|
||||
# "data": [
|
||||
# {
|
||||
# "object": "embedding",
|
||||
# "embedding": [...],
|
||||
# "index": 0
|
||||
# }
|
||||
# ],
|
||||
# "model": "MODEL_NAME",
|
||||
# "usage": {
|
||||
# "prompt_tokens": 3,
|
||||
# "total_tokens": 3
|
||||
# }
|
||||
# }
|
||||
embeddings = []
|
||||
for idx, text in enumerate(texts):
|
||||
embedding = [0.1] * 768
|
||||
embeddings.append(
|
||||
{
|
||||
'object': 'embedding',
|
||||
'embedding': embedding,
|
||||
'index': idx,
|
||||
}
|
||||
)
|
||||
return {
|
||||
'object': 'list',
|
||||
'data': embeddings,
|
||||
'model': 'MODEL_NAME',
|
||||
'usage': {
|
||||
'prompt_tokens': sum(len(text.split(' ')) for text in texts),
|
||||
'total_tokens': sum(len(text.split(' ')) for text in texts),
|
||||
},
|
||||
}
|
||||
|
||||
def invoke_rerank(server_url: str, query: str, texts: list[str]) -> list[dict]:
|
||||
# Example response:
|
||||
# [
|
||||
# {
|
||||
# "index": 0,
|
||||
# "text": "Deep Learning is ...",
|
||||
# "score": 0.9950755
|
||||
# }
|
||||
# ]
|
||||
reranked_docs = []
|
||||
for idx, text in enumerate(texts):
|
||||
reranked_docs.append(
|
||||
{
|
||||
'index': idx,
|
||||
'text': text,
|
||||
'score': 0.9,
|
||||
}
|
||||
)
|
||||
# For mock, only return the first document
|
||||
break
|
||||
return reranked_docs
|
@@ -0,0 +1,72 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
from api.core.model_runtime.model_providers.huggingface_tei.text_embedding.text_embedding import TeiHelper
|
||||
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.huggingface_tei.text_embedding.text_embedding import (
|
||||
HuggingfaceTeiTextEmbeddingModel,
|
||||
)
|
||||
from tests.integration_tests.model_runtime.__mock.huggingface_tei import MockTEIClass
|
||||
|
||||
MOCK = os.getenv('MOCK_SWITCH', 'false').lower() == 'true'
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def setup_tei_mock(request, monkeypatch: pytest.MonkeyPatch):
|
||||
if MOCK:
|
||||
monkeypatch.setattr(TeiHelper, 'get_tei_extra_parameter', MockTEIClass.get_tei_extra_parameter)
|
||||
monkeypatch.setattr(TeiHelper, 'invoke_tokenize', MockTEIClass.invoke_tokenize)
|
||||
monkeypatch.setattr(TeiHelper, 'invoke_embeddings', MockTEIClass.invoke_embeddings)
|
||||
monkeypatch.setattr(TeiHelper, 'invoke_rerank', MockTEIClass.invoke_rerank)
|
||||
yield
|
||||
|
||||
if MOCK:
|
||||
monkeypatch.undo()
|
||||
|
||||
|
||||
@pytest.mark.parametrize('setup_tei_mock', [['none']], indirect=True)
|
||||
def test_validate_credentials(setup_tei_mock):
|
||||
model = HuggingfaceTeiTextEmbeddingModel()
|
||||
# model name is only used in mock
|
||||
model_name = 'embedding'
|
||||
|
||||
if MOCK:
|
||||
# TEI Provider will check model type by API endpoint, at real server, the model type is correct.
|
||||
# So we dont need to check model type here. Only check in mock
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='reranker',
|
||||
credentials={
|
||||
'server_url': os.environ.get('TEI_EMBEDDING_SERVER_URL', ""),
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model=model_name,
|
||||
credentials={
|
||||
'server_url': os.environ.get('TEI_EMBEDDING_SERVER_URL', ""),
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_tei_mock', [['none']], indirect=True)
|
||||
def test_invoke_model(setup_tei_mock):
|
||||
model = HuggingfaceTeiTextEmbeddingModel()
|
||||
model_name = 'embedding'
|
||||
|
||||
result = model.invoke(
|
||||
model=model_name,
|
||||
credentials={
|
||||
'server_url': os.environ.get('TEI_EMBEDDING_SERVER_URL', ""),
|
||||
},
|
||||
texts=[
|
||||
"hello",
|
||||
"world"
|
||||
],
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(result, TextEmbeddingResult)
|
||||
assert len(result.embeddings) == 2
|
||||
assert result.usage.total_tokens > 0
|
@@ -0,0 +1,76 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.huggingface_tei.rerank.rerank import (
|
||||
HuggingfaceTeiRerankModel,
|
||||
)
|
||||
from core.model_runtime.model_providers.huggingface_tei.text_embedding.text_embedding import TeiHelper
|
||||
from tests.integration_tests.model_runtime.__mock.huggingface_tei import MockTEIClass
|
||||
|
||||
MOCK = os.getenv('MOCK_SWITCH', 'false').lower() == 'true'
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def setup_tei_mock(request, monkeypatch: pytest.MonkeyPatch):
|
||||
if MOCK:
|
||||
monkeypatch.setattr(TeiHelper, 'get_tei_extra_parameter', MockTEIClass.get_tei_extra_parameter)
|
||||
monkeypatch.setattr(TeiHelper, 'invoke_tokenize', MockTEIClass.invoke_tokenize)
|
||||
monkeypatch.setattr(TeiHelper, 'invoke_embeddings', MockTEIClass.invoke_embeddings)
|
||||
monkeypatch.setattr(TeiHelper, 'invoke_rerank', MockTEIClass.invoke_rerank)
|
||||
yield
|
||||
|
||||
if MOCK:
|
||||
monkeypatch.undo()
|
||||
|
||||
@pytest.mark.parametrize('setup_tei_mock', [['none']], indirect=True)
|
||||
def test_validate_credentials(setup_tei_mock):
|
||||
model = HuggingfaceTeiRerankModel()
|
||||
# model name is only used in mock
|
||||
model_name = 'reranker'
|
||||
|
||||
if MOCK:
|
||||
# TEI Provider will check model type by API endpoint, at real server, the model type is correct.
|
||||
# So we dont need to check model type here. Only check in mock
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='embedding',
|
||||
credentials={
|
||||
'server_url': os.environ.get('TEI_RERANK_SERVER_URL'),
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model=model_name,
|
||||
credentials={
|
||||
'server_url': os.environ.get('TEI_RERANK_SERVER_URL'),
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_tei_mock', [['none']], indirect=True)
|
||||
def test_invoke_model(setup_tei_mock):
|
||||
model = HuggingfaceTeiRerankModel()
|
||||
# model name is only used in mock
|
||||
model_name = 'reranker'
|
||||
|
||||
result = model.invoke(
|
||||
model=model_name,
|
||||
credentials={
|
||||
'server_url': os.environ.get('TEI_RERANK_SERVER_URL'),
|
||||
},
|
||||
query="Who is Kasumi?",
|
||||
docs=[
|
||||
"Kasumi is a girl's name of Japanese origin meaning \"mist\".",
|
||||
"Her music is a kawaii bass, a mix of future bass, pop, and kawaii music ",
|
||||
"and she leads a team named PopiParty."
|
||||
],
|
||||
score_threshold=0.8
|
||||
)
|
||||
|
||||
assert isinstance(result, RerankResult)
|
||||
assert len(result.docs) == 1
|
||||
assert result.docs[0].index == 0
|
||||
assert result.docs[0].score >= 0.8
|
Reference in New Issue
Block a user