refactor: Improve model status handling and structured output (#20586)
Signed-off-by: -LAN- <laipz8200@outlook.com>
This commit is contained in:
@@ -3,11 +3,16 @@ import os
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import Generator
|
||||
from unittest.mock import MagicMock
|
||||
from decimal import Decimal
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from app_factory import create_app
|
||||
from configs import dify_config
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage
|
||||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionStatus
|
||||
from core.workflow.enums import SystemVariableKey
|
||||
@@ -19,13 +24,27 @@ from core.workflow.nodes.llm.node import LLMNode
|
||||
from extensions.ext_database import db
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import WorkflowType
|
||||
from tests.integration_tests.workflow.nodes.__mock.model import get_mocked_fetch_model_config
|
||||
|
||||
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
||||
from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mock
|
||||
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def app():
|
||||
# Set up storage configuration
|
||||
os.environ["STORAGE_TYPE"] = "opendal"
|
||||
os.environ["OPENDAL_SCHEME"] = "fs"
|
||||
os.environ["OPENDAL_FS_ROOT"] = "storage"
|
||||
|
||||
# Ensure storage directory exists
|
||||
os.makedirs("storage", exist_ok=True)
|
||||
|
||||
app = create_app()
|
||||
dify_config.LOGIN_DISABLED = True
|
||||
return app
|
||||
|
||||
|
||||
def init_llm_node(config: dict) -> LLMNode:
|
||||
graph_config = {
|
||||
"edges": [
|
||||
@@ -40,13 +59,19 @@ def init_llm_node(config: dict) -> LLMNode:
|
||||
|
||||
graph = Graph.init(graph_config=graph_config)
|
||||
|
||||
# Use proper UUIDs for database compatibility
|
||||
tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
|
||||
app_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056c"
|
||||
workflow_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056d"
|
||||
user_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056e"
|
||||
|
||||
init_params = GraphInitParams(
|
||||
tenant_id="1",
|
||||
app_id="1",
|
||||
tenant_id=tenant_id,
|
||||
app_id=app_id,
|
||||
workflow_type=WorkflowType.WORKFLOW,
|
||||
workflow_id="1",
|
||||
workflow_id=workflow_id,
|
||||
graph_config=graph_config,
|
||||
user_id="1",
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
call_depth=0,
|
||||
@@ -77,115 +102,197 @@ def init_llm_node(config: dict) -> LLMNode:
|
||||
return node
|
||||
|
||||
|
||||
def test_execute_llm(setup_model_mock):
|
||||
node = init_llm_node(
|
||||
config={
|
||||
"id": "llm",
|
||||
"data": {
|
||||
"title": "123",
|
||||
"type": "llm",
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
def test_execute_llm(app):
|
||||
with app.app_context():
|
||||
node = init_llm_node(
|
||||
config={
|
||||
"id": "llm",
|
||||
"data": {
|
||||
"title": "123",
|
||||
"type": "llm",
|
||||
"model": {
|
||||
"provider": "langgenius/openai/openai",
|
||||
"name": "gpt-3.5-turbo",
|
||||
"mode": "chat",
|
||||
"completion_params": {},
|
||||
},
|
||||
"prompt_template": [
|
||||
{
|
||||
"role": "system",
|
||||
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}.",
|
||||
},
|
||||
{"role": "user", "text": "{{#sys.query#}}"},
|
||||
],
|
||||
"memory": None,
|
||||
"context": {"enabled": False},
|
||||
"vision": {"enabled": False},
|
||||
},
|
||||
"prompt_template": [
|
||||
{"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},
|
||||
{"role": "user", "text": "{{#sys.query#}}"},
|
||||
],
|
||||
"memory": None,
|
||||
"context": {"enabled": False},
|
||||
"vision": {"enabled": False},
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
||||
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
||||
|
||||
# Mock db.session.close()
|
||||
db.session.close = MagicMock()
|
||||
# Create a proper LLM result with real entities
|
||||
mock_usage = LLMUsage(
|
||||
prompt_tokens=30,
|
||||
prompt_unit_price=Decimal("0.001"),
|
||||
prompt_price_unit=Decimal("1000"),
|
||||
prompt_price=Decimal("0.00003"),
|
||||
completion_tokens=20,
|
||||
completion_unit_price=Decimal("0.002"),
|
||||
completion_price_unit=Decimal("1000"),
|
||||
completion_price=Decimal("0.00004"),
|
||||
total_tokens=50,
|
||||
total_price=Decimal("0.00007"),
|
||||
currency="USD",
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials=credentials,
|
||||
)
|
||||
mock_message = AssistantPromptMessage(content="This is a test response from the mocked LLM.")
|
||||
|
||||
# execute node
|
||||
result = node._run()
|
||||
assert isinstance(result, Generator)
|
||||
mock_llm_result = LLMResult(
|
||||
model="gpt-3.5-turbo",
|
||||
prompt_messages=[],
|
||||
message=mock_message,
|
||||
usage=mock_usage,
|
||||
)
|
||||
|
||||
for item in result:
|
||||
if isinstance(item, RunCompletedEvent):
|
||||
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert item.run_result.process_data is not None
|
||||
assert item.run_result.outputs is not None
|
||||
assert item.run_result.outputs.get("text") is not None
|
||||
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
|
||||
# Create a simple mock model instance that doesn't call real providers
|
||||
mock_model_instance = MagicMock()
|
||||
mock_model_instance.invoke_llm.return_value = mock_llm_result
|
||||
|
||||
# Create a simple mock model config with required attributes
|
||||
mock_model_config = MagicMock()
|
||||
mock_model_config.mode = "chat"
|
||||
mock_model_config.provider = "langgenius/openai/openai"
|
||||
mock_model_config.model = "gpt-3.5-turbo"
|
||||
mock_model_config.provider_model_bundle.configuration.tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
|
||||
|
||||
# Mock the _fetch_model_config method
|
||||
def mock_fetch_model_config_func(_node_data_model):
|
||||
return mock_model_instance, mock_model_config
|
||||
|
||||
# Also mock ModelManager.get_model_instance to avoid database calls
|
||||
def mock_get_model_instance(_self, **kwargs):
|
||||
return mock_model_instance
|
||||
|
||||
with (
|
||||
patch.object(node, "_fetch_model_config", mock_fetch_model_config_func),
|
||||
patch("core.model_manager.ModelManager.get_model_instance", mock_get_model_instance),
|
||||
):
|
||||
# execute node
|
||||
result = node._run()
|
||||
assert isinstance(result, Generator)
|
||||
|
||||
for item in result:
|
||||
if isinstance(item, RunCompletedEvent):
|
||||
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert item.run_result.process_data is not None
|
||||
assert item.run_result.outputs is not None
|
||||
assert item.run_result.outputs.get("text") is not None
|
||||
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
|
||||
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_model_mock):
|
||||
def test_execute_llm_with_jinja2(app, setup_code_executor_mock):
|
||||
"""
|
||||
Test execute LLM node with jinja2
|
||||
"""
|
||||
node = init_llm_node(
|
||||
config={
|
||||
"id": "llm",
|
||||
"data": {
|
||||
"title": "123",
|
||||
"type": "llm",
|
||||
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
||||
"prompt_config": {
|
||||
"jinja2_variables": [
|
||||
{"variable": "sys_query", "value_selector": ["sys", "query"]},
|
||||
{"variable": "output", "value_selector": ["abc", "output"]},
|
||||
]
|
||||
with app.app_context():
|
||||
node = init_llm_node(
|
||||
config={
|
||||
"id": "llm",
|
||||
"data": {
|
||||
"title": "123",
|
||||
"type": "llm",
|
||||
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
||||
"prompt_config": {
|
||||
"jinja2_variables": [
|
||||
{"variable": "sys_query", "value_selector": ["sys", "query"]},
|
||||
{"variable": "output", "value_selector": ["abc", "output"]},
|
||||
]
|
||||
},
|
||||
"prompt_template": [
|
||||
{
|
||||
"role": "system",
|
||||
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
|
||||
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
|
||||
"edition_type": "jinja2",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"text": "{{#sys.query#}}",
|
||||
"jinja2_text": "{{sys_query}}",
|
||||
"edition_type": "basic",
|
||||
},
|
||||
],
|
||||
"memory": None,
|
||||
"context": {"enabled": False},
|
||||
"vision": {"enabled": False},
|
||||
},
|
||||
"prompt_template": [
|
||||
{
|
||||
"role": "system",
|
||||
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
|
||||
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
|
||||
"edition_type": "jinja2",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"text": "{{#sys.query#}}",
|
||||
"jinja2_text": "{{sys_query}}",
|
||||
"edition_type": "basic",
|
||||
},
|
||||
],
|
||||
"memory": None,
|
||||
"context": {"enabled": False},
|
||||
"vision": {"enabled": False},
|
||||
},
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
||||
# Mock db.session.close()
|
||||
db.session.close = MagicMock()
|
||||
|
||||
# Mock db.session.close()
|
||||
db.session.close = MagicMock()
|
||||
# Create a proper LLM result with real entities
|
||||
mock_usage = LLMUsage(
|
||||
prompt_tokens=30,
|
||||
prompt_unit_price=Decimal("0.001"),
|
||||
prompt_price_unit=Decimal("1000"),
|
||||
prompt_price=Decimal("0.00003"),
|
||||
completion_tokens=20,
|
||||
completion_unit_price=Decimal("0.002"),
|
||||
completion_price_unit=Decimal("1000"),
|
||||
completion_price=Decimal("0.00004"),
|
||||
total_tokens=50,
|
||||
total_price=Decimal("0.00007"),
|
||||
currency="USD",
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
node._fetch_model_config = get_mocked_fetch_model_config(
|
||||
provider="langgenius/openai/openai",
|
||||
model="gpt-3.5-turbo",
|
||||
mode="chat",
|
||||
credentials=credentials,
|
||||
)
|
||||
mock_message = AssistantPromptMessage(content="Test response: sunny weather and what's the weather today?")
|
||||
|
||||
# execute node
|
||||
result = node._run()
|
||||
mock_llm_result = LLMResult(
|
||||
model="gpt-3.5-turbo",
|
||||
prompt_messages=[],
|
||||
message=mock_message,
|
||||
usage=mock_usage,
|
||||
)
|
||||
|
||||
for item in result:
|
||||
if isinstance(item, RunCompletedEvent):
|
||||
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert item.run_result.process_data is not None
|
||||
assert "sunny" in json.dumps(item.run_result.process_data)
|
||||
assert "what's the weather today?" in json.dumps(item.run_result.process_data)
|
||||
# Create a simple mock model instance that doesn't call real providers
|
||||
mock_model_instance = MagicMock()
|
||||
mock_model_instance.invoke_llm.return_value = mock_llm_result
|
||||
|
||||
# Create a simple mock model config with required attributes
|
||||
mock_model_config = MagicMock()
|
||||
mock_model_config.mode = "chat"
|
||||
mock_model_config.provider = "openai"
|
||||
mock_model_config.model = "gpt-3.5-turbo"
|
||||
mock_model_config.provider_model_bundle.configuration.tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
|
||||
|
||||
# Mock the _fetch_model_config method
|
||||
def mock_fetch_model_config_func(_node_data_model):
|
||||
return mock_model_instance, mock_model_config
|
||||
|
||||
# Also mock ModelManager.get_model_instance to avoid database calls
|
||||
def mock_get_model_instance(_self, **kwargs):
|
||||
return mock_model_instance
|
||||
|
||||
with (
|
||||
patch.object(node, "_fetch_model_config", mock_fetch_model_config_func),
|
||||
patch("core.model_manager.ModelManager.get_model_instance", mock_get_model_instance),
|
||||
):
|
||||
# execute node
|
||||
result = node._run()
|
||||
|
||||
for item in result:
|
||||
if isinstance(item, RunCompletedEvent):
|
||||
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
assert item.run_result.process_data is not None
|
||||
assert "sunny" in json.dumps(item.run_result.process_data)
|
||||
assert "what's the weather today?" in json.dumps(item.run_result.process_data)
|
||||
|
||||
|
||||
def test_extract_json():
|
||||
|
Reference in New Issue
Block a user