Feat/dify rag (#2528)

Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
Jyong
2024-02-22 23:31:57 +08:00
committed by GitHub
parent 97fe817186
commit 6c4e6bf1d6
119 changed files with 3181 additions and 5892 deletions

View File

@@ -15,6 +15,7 @@ from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
@@ -178,9 +179,9 @@ class DatasetApi(Resource):
location='json', store_missing=False,
type=_validate_description_length)
parser.add_argument('indexing_technique', type=str, location='json',
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help='Invalid indexing technique.')
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True,
help='Invalid indexing technique.')
parser.add_argument('permission', type=str, location='json', choices=(
'only_me', 'all_team_members'), help='Invalid permission.')
parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
@@ -258,7 +259,7 @@ class DatasetIndexingEstimateApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
parser.add_argument('indexing_technique', type=str, required=True,
parser.add_argument('indexing_technique', type=str, required=True,
choices=Dataset.INDEXING_TECHNIQUE_LIST,
nullable=True, location='json')
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
@@ -268,6 +269,7 @@ class DatasetIndexingEstimateApi(Resource):
args = parser.parse_args()
# validate args
DocumentService.estimate_args_validate(args)
extract_settings = []
if args['info_list']['data_source_type'] == 'upload_file':
file_ids = args['info_list']['file_info_list']['file_ids']
file_details = db.session.query(UploadFile).filter(
@@ -278,37 +280,44 @@ class DatasetIndexingEstimateApi(Resource):
if file_details is None:
raise NotFound("File not found.")
indexing_runner = IndexingRunner()
try:
response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
if file_details:
for file_detail in file_details:
extract_setting = ExtractSetting(
datasource_type="upload_file",
upload_file=file_detail,
document_model=args['doc_form']
)
extract_settings.append(extract_setting)
elif args['info_list']['data_source_type'] == 'notion_import':
indexing_runner = IndexingRunner()
try:
response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
args['info_list']['notion_info_list'],
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
notion_info_list = args['info_list']['notion_info_list']
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
for page in notion_info['pages']:
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": workspace_id,
"notion_obj_id": page['page_id'],
"notion_page_type": page['type']
},
document_model=args['doc_form']
)
extract_settings.append(extract_setting)
else:
raise ValueError('Data source type not support')
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings,
args['process_rule'], args['doc_form'],
args['doc_language'], args['dataset_id'],
args['indexing_technique'])
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
return response, 200
@@ -508,4 +517,3 @@ api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')