FEAT: NEW WORKFLOW ENGINE (#3160)
Co-authored-by: Joel <iamjoel007@gmail.com> Co-authored-by: Yeuoly <admin@srmxy.cn> Co-authored-by: JzoNg <jzongcode@gmail.com> Co-authored-by: StyleZhang <jasonapring2015@outlook.com> Co-authored-by: jyong <jyong@dify.ai> Co-authored-by: nite-knite <nkCoding@gmail.com> Co-authored-by: jyong <718720800@qq.com>
This commit is contained in:
@@ -1,419 +1,26 @@
|
||||
import enum
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from typing import Optional, cast
|
||||
|
||||
from core.entities.application_entities import (
|
||||
AdvancedCompletionPromptTemplateEntity,
|
||||
ModelConfigEntity,
|
||||
PromptTemplateEntity,
|
||||
)
|
||||
from core.file.file_obj import FileObj
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageRole,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import PromptMessage
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.prompt.prompt_builder import PromptBuilder
|
||||
from core.prompt.prompt_template import PromptTemplateParser
|
||||
|
||||
|
||||
class AppMode(enum.Enum):
|
||||
COMPLETION = 'completion'
|
||||
CHAT = 'chat'
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str) -> 'AppMode':
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f'invalid mode value {value}')
|
||||
|
||||
|
||||
class ModelMode(enum.Enum):
|
||||
COMPLETION = 'completion'
|
||||
CHAT = 'chat'
|
||||
|
||||
@classmethod
|
||||
def value_of(cls, value: str) -> 'ModelMode':
|
||||
"""
|
||||
Get value of given mode.
|
||||
|
||||
:param value: mode value
|
||||
:return: mode
|
||||
"""
|
||||
for mode in cls:
|
||||
if mode.value == value:
|
||||
return mode
|
||||
raise ValueError(f'invalid mode value {value}')
|
||||
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
|
||||
|
||||
|
||||
class PromptTransform:
|
||||
def get_prompt(self,
|
||||
app_mode: str,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> \
|
||||
tuple[list[PromptMessage], Optional[list[str]]]:
|
||||
app_mode = AppMode.value_of(app_mode)
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
|
||||
prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(
|
||||
app_mode=app_mode,
|
||||
provider=model_config.provider,
|
||||
model=model_config.model
|
||||
))
|
||||
|
||||
if app_mode == AppMode.CHAT and model_mode == ModelMode.CHAT:
|
||||
stops = None
|
||||
|
||||
prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(
|
||||
prompt_rules=prompt_rules,
|
||||
pre_prompt=prompt_template_entity.simple_prompt_template,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
else:
|
||||
stops = prompt_rules.get('stops')
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
prompt_messages = self._get_simple_others_prompt_messages(
|
||||
prompt_rules=prompt_rules,
|
||||
pre_prompt=prompt_template_entity.simple_prompt_template,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
return prompt_messages, stops
|
||||
|
||||
def get_advanced_prompt(self, app_mode: str,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
app_mode = AppMode.value_of(app_mode)
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
if app_mode == AppMode.CHAT:
|
||||
if model_mode == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_chat_app_completion_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
elif model_mode == ModelMode.CHAT:
|
||||
prompt_messages = self._get_chat_app_chat_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
query=query,
|
||||
files=files,
|
||||
context=context,
|
||||
memory=memory,
|
||||
model_config=model_config
|
||||
)
|
||||
elif app_mode == AppMode.COMPLETION:
|
||||
if model_mode == ModelMode.CHAT:
|
||||
prompt_messages = self._get_completion_app_chat_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
files=files,
|
||||
context=context,
|
||||
)
|
||||
elif model_mode == ModelMode.COMPLETION:
|
||||
prompt_messages = self._get_completion_app_completion_model_prompt_messages(
|
||||
prompt_template_entity=prompt_template_entity,
|
||||
inputs=inputs,
|
||||
context=context,
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
|
||||
max_token_limit: int,
|
||||
human_prefix: Optional[str] = None,
|
||||
ai_prefix: Optional[str] = None) -> str:
|
||||
"""Get memory messages."""
|
||||
kwargs = {
|
||||
"max_token_limit": max_token_limit
|
||||
}
|
||||
|
||||
if human_prefix:
|
||||
kwargs['human_prefix'] = human_prefix
|
||||
|
||||
if ai_prefix:
|
||||
kwargs['ai_prefix'] = ai_prefix
|
||||
|
||||
return memory.get_history_prompt_text(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
|
||||
max_token_limit: int) -> list[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
return memory.get_history_prompt_messages(
|
||||
max_token_limit=max_token_limit
|
||||
)
|
||||
|
||||
def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
|
||||
# baichuan
|
||||
if provider == 'baichuan':
|
||||
return self._prompt_file_name_for_baichuan(app_mode)
|
||||
|
||||
baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
|
||||
if provider in baichuan_supported_providers and 'baichuan' in model.lower():
|
||||
return self._prompt_file_name_for_baichuan(app_mode)
|
||||
|
||||
# common
|
||||
if app_mode == AppMode.COMPLETION:
|
||||
return 'common_completion'
|
||||
else:
|
||||
return 'common_chat'
|
||||
|
||||
def _prompt_file_name_for_baichuan(self, app_mode: AppMode) -> str:
|
||||
if app_mode == AppMode.COMPLETION:
|
||||
return 'baichuan_completion'
|
||||
else:
|
||||
return 'baichuan_chat'
|
||||
|
||||
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||
# Get the absolute path of the subdirectory
|
||||
prompt_path = os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)),
|
||||
'generate_prompts')
|
||||
|
||||
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
||||
# Open the JSON file and read its content
|
||||
with open(json_file_path, encoding='utf-8') as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict,
|
||||
pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
files: list[FileObj],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
prompt_messages = []
|
||||
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
if prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
|
||||
self._append_chat_histories(
|
||||
memory=memory,
|
||||
prompt_messages=prompt_messages,
|
||||
model_config=model_config
|
||||
)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_simple_others_prompt_messages(self, prompt_rules: dict,
|
||||
pre_prompt: str,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
files: list[FileObj],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
context_prompt_content = ''
|
||||
if context and 'context_prompt' in prompt_rules:
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
|
||||
context_prompt_content = prompt_template.format(
|
||||
{'context': context}
|
||||
)
|
||||
|
||||
pre_prompt_content = ''
|
||||
if pre_prompt:
|
||||
prompt_template = PromptTemplateParser(template=pre_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
pre_prompt_content = prompt_template.format(
|
||||
prompt_inputs
|
||||
)
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += pre_prompt_content
|
||||
|
||||
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
||||
|
||||
if memory and 'histories_prompt' in prompt_rules:
|
||||
# append chat histories
|
||||
tmp_human_message = UserPromptMessage(
|
||||
content=PromptBuilder.parse_prompt(
|
||||
prompt=prompt + query_prompt,
|
||||
inputs={
|
||||
'query': query
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
||||
|
||||
histories = self._get_history_messages_from_memory(
|
||||
memory=memory,
|
||||
max_token_limit=rest_tokens,
|
||||
ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
|
||||
human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||
)
|
||||
prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
|
||||
histories_prompt_content = prompt_template.format({'histories': histories})
|
||||
|
||||
prompt = ''
|
||||
for order in prompt_rules['system_prompt_orders']:
|
||||
if order == 'context_prompt':
|
||||
prompt += context_prompt_content
|
||||
elif order == 'pre_prompt':
|
||||
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
||||
elif order == 'histories_prompt':
|
||||
prompt += histories_prompt_content
|
||||
|
||||
prompt_template = PromptTemplateParser(template=query_prompt)
|
||||
query_prompt_content = prompt_template.format({'query': query})
|
||||
|
||||
prompt += query_prompt_content
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
|
||||
model_mode = ModelMode.value_of(model_config.mode)
|
||||
|
||||
if model_mode == ModelMode.CHAT and files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
else:
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
else:
|
||||
prompt_message = UserPromptMessage(content=prompt)
|
||||
|
||||
return [prompt_message]
|
||||
|
||||
def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#context#' in prompt_template.variable_keys:
|
||||
if context:
|
||||
prompt_inputs['#context#'] = context
|
||||
else:
|
||||
prompt_inputs['#context#'] = ''
|
||||
|
||||
def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
|
||||
if '#query#' in prompt_template.variable_keys:
|
||||
if query:
|
||||
prompt_inputs['#query#'] = query
|
||||
else:
|
||||
prompt_inputs['#query#'] = ''
|
||||
|
||||
def _set_histories_variable(self, memory: TokenBufferMemory,
|
||||
raw_prompt: str,
|
||||
role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
|
||||
prompt_template: PromptTemplateParser,
|
||||
prompt_inputs: dict,
|
||||
model_config: ModelConfigEntity) -> None:
|
||||
if '#histories#' in prompt_template.variable_keys:
|
||||
if memory:
|
||||
tmp_human_message = UserPromptMessage(
|
||||
content=PromptBuilder.parse_prompt(
|
||||
prompt=raw_prompt,
|
||||
inputs={'#histories#': '', **prompt_inputs}
|
||||
)
|
||||
)
|
||||
|
||||
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
|
||||
|
||||
histories = self._get_history_messages_from_memory(
|
||||
memory=memory,
|
||||
max_token_limit=rest_tokens,
|
||||
human_prefix=role_prefix.user,
|
||||
ai_prefix=role_prefix.assistant
|
||||
)
|
||||
prompt_inputs['#histories#'] = histories
|
||||
else:
|
||||
prompt_inputs['#histories#'] = ''
|
||||
|
||||
def _append_chat_histories(self, memory: TokenBufferMemory,
|
||||
memory_config: MemoryConfig,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_config: ModelConfigEntity) -> None:
|
||||
if memory:
|
||||
rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
|
||||
histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
|
||||
prompt_messages.extend(histories)
|
||||
model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
|
||||
rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
|
||||
histories = self._get_history_messages_list_from_memory(memory, memory_config, rest_tokens)
|
||||
prompt_messages.extend(histories)
|
||||
|
||||
def _calculate_rest_token(self, prompt_messages: list[PromptMessage], model_config: ModelConfigEntity) -> int:
|
||||
return prompt_messages
|
||||
|
||||
def _calculate_rest_token(self, prompt_messages: list[PromptMessage],
|
||||
model_config: ModelConfigWithCredentialsEntity) -> int:
|
||||
rest_tokens = 2000
|
||||
|
||||
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||
@@ -439,152 +46,38 @@ class PromptTransform:
|
||||
|
||||
return rest_tokens
|
||||
|
||||
def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
|
||||
prompt = prompt_template.format(
|
||||
prompt_inputs
|
||||
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
|
||||
memory_config: MemoryConfig,
|
||||
max_token_limit: int,
|
||||
human_prefix: Optional[str] = None,
|
||||
ai_prefix: Optional[str] = None) -> str:
|
||||
"""Get memory messages."""
|
||||
kwargs = {
|
||||
"max_token_limit": max_token_limit
|
||||
}
|
||||
|
||||
if human_prefix:
|
||||
kwargs['human_prefix'] = human_prefix
|
||||
|
||||
if ai_prefix:
|
||||
kwargs['ai_prefix'] = ai_prefix
|
||||
|
||||
if memory_config.window.enabled and memory_config.window.size is not None and memory_config.window.size > 0:
|
||||
kwargs['message_limit'] = memory_config.window.size
|
||||
|
||||
return memory.get_history_prompt_text(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||
return prompt
|
||||
|
||||
def _get_chat_app_completion_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
|
||||
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
||||
role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_query_variable(query, prompt_template, prompt_inputs)
|
||||
|
||||
self._set_histories_variable(
|
||||
memory=memory,
|
||||
raw_prompt=raw_prompt,
|
||||
role_prefix=role_prefix,
|
||||
prompt_template=prompt_template,
|
||||
prompt_inputs=prompt_inputs,
|
||||
model_config=model_config
|
||||
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
|
||||
memory_config: MemoryConfig,
|
||||
max_token_limit: int) -> list[PromptMessage]:
|
||||
"""Get memory messages."""
|
||||
return memory.get_history_prompt_messages(
|
||||
max_token_limit=max_token_limit,
|
||||
message_limit=memory_config.window.size
|
||||
if (memory_config.window.enabled
|
||||
and memory_config.window.size is not None
|
||||
and memory_config.window.size > 0)
|
||||
else 10
|
||||
)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_chat_app_chat_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
query: str,
|
||||
files: list[FileObj],
|
||||
context: Optional[str],
|
||||
memory: Optional[TokenBufferMemory],
|
||||
model_config: ModelConfigEntity) -> list[PromptMessage]:
|
||||
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item.text
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
if prompt_item.role == PromptMessageRole.USER:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
||||
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
||||
|
||||
self._append_chat_histories(memory, prompt_messages, model_config)
|
||||
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=query)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_completion_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
context: Optional[str]) -> list[PromptMessage]:
|
||||
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _get_completion_app_chat_model_prompt_messages(self,
|
||||
prompt_template_entity: PromptTemplateEntity,
|
||||
inputs: dict,
|
||||
files: list[FileObj],
|
||||
context: Optional[str]) -> list[PromptMessage]:
|
||||
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
|
||||
|
||||
prompt_messages = []
|
||||
|
||||
for prompt_item in raw_prompt_list:
|
||||
raw_prompt = prompt_item.text
|
||||
|
||||
prompt_template = PromptTemplateParser(template=raw_prompt)
|
||||
prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
||||
|
||||
self._set_context_variable(context, prompt_template, prompt_inputs)
|
||||
|
||||
prompt = self._format_prompt(prompt_template, prompt_inputs)
|
||||
|
||||
if prompt_item.role == PromptMessageRole.USER:
|
||||
prompt_messages.append(UserPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
|
||||
prompt_messages.append(SystemPromptMessage(content=prompt))
|
||||
elif prompt_item.role == PromptMessageRole.ASSISTANT:
|
||||
prompt_messages.append(AssistantPromptMessage(content=prompt))
|
||||
|
||||
for prompt_message in prompt_messages[::-1]:
|
||||
if prompt_message.role == PromptMessageRole.USER:
|
||||
if files:
|
||||
prompt_message_contents = [TextPromptMessageContent(data=prompt_message.content)]
|
||||
for file in files:
|
||||
prompt_message_contents.append(file.prompt_message_content)
|
||||
|
||||
prompt_message.content = prompt_message_contents
|
||||
break
|
||||
|
||||
return prompt_messages
|
||||
|
Reference in New Issue
Block a user