fix: better memory usage from 800+ to 500+ (#11796)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
This commit is contained in:
@@ -4,11 +4,10 @@ import json
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from typing import Optional, Union, cast
|
||||
from typing import TYPE_CHECKING, Optional, Union, cast
|
||||
|
||||
import google.auth.transport.requests
|
||||
import requests
|
||||
import vertexai.generative_models as glm
|
||||
from anthropic import AnthropicVertex, Stream
|
||||
from anthropic.types import (
|
||||
ContentBlockDeltaEvent,
|
||||
@@ -19,8 +18,6 @@ from anthropic.types import (
|
||||
MessageStreamEvent,
|
||||
)
|
||||
from google.api_core import exceptions
|
||||
from google.cloud import aiplatform
|
||||
from google.oauth2 import service_account
|
||||
from PIL import Image
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
@@ -47,6 +44,9 @@ from core.model_runtime.errors.invoke import (
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import vertexai.generative_models as glm
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -102,6 +102,8 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
||||
:param stream: is stream response
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
from google.oauth2 import service_account
|
||||
|
||||
# use Anthropic official SDK references
|
||||
# - https://github.com/anthropics/anthropic-sdk-python
|
||||
service_account_key = credentials.get("vertex_service_account_key", "")
|
||||
@@ -406,13 +408,15 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
return text.rstrip()
|
||||
|
||||
def _convert_tools_to_glm_tool(self, tools: list[PromptMessageTool]) -> glm.Tool:
|
||||
def _convert_tools_to_glm_tool(self, tools: list[PromptMessageTool]) -> "glm.Tool":
|
||||
"""
|
||||
Convert tool messages to glm tools
|
||||
|
||||
:param tools: tool messages
|
||||
:return: glm tools
|
||||
"""
|
||||
import vertexai.generative_models as glm
|
||||
|
||||
return glm.Tool(
|
||||
function_declarations=[
|
||||
glm.FunctionDeclaration(
|
||||
@@ -473,6 +477,10 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
||||
:param user: unique user id
|
||||
:return: full response or stream response chunk generator result
|
||||
"""
|
||||
import vertexai.generative_models as glm
|
||||
from google.cloud import aiplatform
|
||||
from google.oauth2 import service_account
|
||||
|
||||
config_kwargs = model_parameters.copy()
|
||||
config_kwargs["max_output_tokens"] = config_kwargs.pop("max_tokens_to_sample", None)
|
||||
|
||||
@@ -522,7 +530,7 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
||||
return self._handle_generate_response(model, credentials, response, prompt_messages)
|
||||
|
||||
def _handle_generate_response(
|
||||
self, model: str, credentials: dict, response: glm.GenerationResponse, prompt_messages: list[PromptMessage]
|
||||
self, model: str, credentials: dict, response: "glm.GenerationResponse", prompt_messages: list[PromptMessage]
|
||||
) -> LLMResult:
|
||||
"""
|
||||
Handle llm response
|
||||
@@ -554,7 +562,7 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
||||
return result
|
||||
|
||||
def _handle_generate_stream_response(
|
||||
self, model: str, credentials: dict, response: glm.GenerationResponse, prompt_messages: list[PromptMessage]
|
||||
self, model: str, credentials: dict, response: "glm.GenerationResponse", prompt_messages: list[PromptMessage]
|
||||
) -> Generator:
|
||||
"""
|
||||
Handle llm stream response
|
||||
@@ -638,13 +646,15 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
||||
|
||||
return message_text
|
||||
|
||||
def _format_message_to_glm_content(self, message: PromptMessage) -> glm.Content:
|
||||
def _format_message_to_glm_content(self, message: PromptMessage) -> "glm.Content":
|
||||
"""
|
||||
Format a single message into glm.Content for Google API
|
||||
|
||||
:param message: one PromptMessage
|
||||
:return: glm Content representation of message
|
||||
"""
|
||||
import vertexai.generative_models as glm
|
||||
|
||||
if isinstance(message, UserPromptMessage):
|
||||
glm_content = glm.Content(role="user", parts=[])
|
||||
|
||||
|
@@ -2,12 +2,9 @@ import base64
|
||||
import json
|
||||
import time
|
||||
from decimal import Decimal
|
||||
from typing import Optional
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
import tiktoken
|
||||
from google.cloud import aiplatform
|
||||
from google.oauth2 import service_account
|
||||
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
|
||||
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
@@ -24,6 +21,11 @@ from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.model_runtime.model_providers.vertex_ai._common import _CommonVertexAi
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
|
||||
else:
|
||||
VertexTextEmbeddingModel = None
|
||||
|
||||
|
||||
class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
|
||||
"""
|
||||
@@ -48,6 +50,10 @@ class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
from google.cloud import aiplatform
|
||||
from google.oauth2 import service_account
|
||||
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
|
||||
|
||||
service_account_key = credentials.get("vertex_service_account_key", "")
|
||||
project_id = credentials["vertex_project_id"]
|
||||
location = credentials["vertex_location"]
|
||||
@@ -100,6 +106,10 @@ class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
from google.cloud import aiplatform
|
||||
from google.oauth2 import service_account
|
||||
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
|
||||
|
||||
try:
|
||||
service_account_key = credentials.get("vertex_service_account_key", "")
|
||||
project_id = credentials["vertex_project_id"]
|
||||
|
Reference in New Issue
Block a user