Added OceanBase as an option for the vector store in Dify (#10010)
This commit is contained in:
0
api/core/rag/datasource/vdb/oceanbase/__init__.py
Normal file
0
api/core/rag/datasource/vdb/oceanbase/__init__.py
Normal file
209
api/core/rag/datasource/vdb/oceanbase/oceanbase_vector.py
Normal file
209
api/core/rag/datasource/vdb/oceanbase/oceanbase_vector.py
Normal file
@@ -0,0 +1,209 @@
|
||||
import json
|
||||
import logging
|
||||
import math
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, model_validator
|
||||
from pyobvector import VECTOR, ObVecClient
|
||||
from sqlalchemy import JSON, Column, String, func
|
||||
from sqlalchemy.dialects.mysql import LONGTEXT
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DEFAULT_OCEANBASE_HNSW_BUILD_PARAM = {"M": 16, "efConstruction": 256}
|
||||
DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM = {"efSearch": 64}
|
||||
OCEANBASE_SUPPORTED_VECTOR_INDEX_TYPE = "HNSW"
|
||||
DEFAULT_OCEANBASE_VECTOR_METRIC_TYPE = "l2"
|
||||
|
||||
|
||||
class OceanBaseVectorConfig(BaseModel):
|
||||
host: str
|
||||
port: int
|
||||
user: str
|
||||
password: str
|
||||
database: str
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
if not values["host"]:
|
||||
raise ValueError("config OCEANBASE_VECTOR_HOST is required")
|
||||
if not values["port"]:
|
||||
raise ValueError("config OCEANBASE_VECTOR_PORT is required")
|
||||
if not values["user"]:
|
||||
raise ValueError("config OCEANBASE_VECTOR_USER is required")
|
||||
if not values["database"]:
|
||||
raise ValueError("config OCEANBASE_VECTOR_DATABASE is required")
|
||||
return values
|
||||
|
||||
|
||||
class OceanBaseVector(BaseVector):
|
||||
def __init__(self, collection_name: str, config: OceanBaseVectorConfig):
|
||||
super().__init__(collection_name)
|
||||
self._config = config
|
||||
self._hnsw_ef_search = -1
|
||||
self._client = ObVecClient(
|
||||
uri=f"{self._config.host}:{self._config.port}",
|
||||
user=self._config.user,
|
||||
password=self._config.password,
|
||||
db_name=self._config.database,
|
||||
)
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.OCEANBASE
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
self._vec_dim = len(embeddings[0])
|
||||
self._create_collection()
|
||||
self.add_texts(texts, embeddings)
|
||||
|
||||
def _create_collection(self) -> None:
|
||||
lock_name = "vector_indexing_lock_" + self._collection_name
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = "vector_indexing_" + self._collection_name
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
|
||||
if self._client.check_table_exists(self._collection_name):
|
||||
return
|
||||
|
||||
self.delete()
|
||||
|
||||
cols = [
|
||||
Column("id", String(36), primary_key=True, autoincrement=False),
|
||||
Column("vector", VECTOR(self._vec_dim)),
|
||||
Column("text", LONGTEXT),
|
||||
Column("metadata", JSON),
|
||||
]
|
||||
vidx_params = self._client.prepare_index_params()
|
||||
vidx_params.add_index(
|
||||
field_name="vector",
|
||||
index_type=OCEANBASE_SUPPORTED_VECTOR_INDEX_TYPE,
|
||||
index_name="vector_index",
|
||||
metric_type=DEFAULT_OCEANBASE_VECTOR_METRIC_TYPE,
|
||||
params=DEFAULT_OCEANBASE_HNSW_BUILD_PARAM,
|
||||
)
|
||||
|
||||
self._client.create_table_with_index_params(
|
||||
table_name=self._collection_name,
|
||||
columns=cols,
|
||||
vidxs=vidx_params,
|
||||
)
|
||||
vals = []
|
||||
params = self._client.perform_raw_text_sql("SHOW PARAMETERS LIKE '%ob_vector_memory_limit_percentage%'")
|
||||
for row in params:
|
||||
val = int(row[6])
|
||||
vals.append(val)
|
||||
if len(vals) == 0:
|
||||
print("ob_vector_memory_limit_percentage not found in parameters.")
|
||||
exit(1)
|
||||
if any(val == 0 for val in vals):
|
||||
try:
|
||||
self._client.perform_raw_text_sql("ALTER SYSTEM SET ob_vector_memory_limit_percentage = 30")
|
||||
except Exception as e:
|
||||
raise Exception(
|
||||
"Failed to set ob_vector_memory_limit_percentage. "
|
||||
+ "Maybe the database user has insufficient privilege.",
|
||||
e,
|
||||
)
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
ids = self._get_uuids(documents)
|
||||
for id, doc, emb in zip(ids, documents, embeddings):
|
||||
self._client.insert(
|
||||
table_name=self._collection_name,
|
||||
data={
|
||||
"id": id,
|
||||
"vector": emb,
|
||||
"text": doc.page_content,
|
||||
"metadata": doc.metadata,
|
||||
},
|
||||
)
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
cur = self._client.get(table_name=self._collection_name, id=id)
|
||||
return cur.rowcount != 0
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
self._client.delete(table_name=self._collection_name, ids=ids)
|
||||
|
||||
def get_ids_by_metadata_field(self, key: str, value: str) -> list[str]:
|
||||
cur = self._client.get(
|
||||
table_name=self._collection_name,
|
||||
where_clause=f"metadata->>'$.{key}' = '{value}'",
|
||||
output_column_name=["id"],
|
||||
)
|
||||
return [row[0] for row in cur]
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
ids = self.get_ids_by_metadata_field(key, value)
|
||||
self.delete_by_ids(ids)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
return []
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
ef_search = kwargs.get("ef_search", self._hnsw_ef_search)
|
||||
if ef_search != self._hnsw_ef_search:
|
||||
self._client.set_ob_hnsw_ef_search(ef_search)
|
||||
self._hnsw_ef_search = ef_search
|
||||
topk = kwargs.get("top_k", 10)
|
||||
cur = self._client.ann_search(
|
||||
table_name=self._collection_name,
|
||||
vec_column_name="vector",
|
||||
vec_data=query_vector,
|
||||
topk=topk,
|
||||
distance_func=func.l2_distance,
|
||||
output_column_names=["text", "metadata"],
|
||||
with_dist=True,
|
||||
)
|
||||
docs = []
|
||||
for text, metadata, distance in cur:
|
||||
metadata = json.loads(metadata)
|
||||
metadata["score"] = 1 - distance / math.sqrt(2)
|
||||
docs.append(
|
||||
Document(
|
||||
page_content=text,
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
return docs
|
||||
|
||||
def delete(self) -> None:
|
||||
self._client.drop_table_if_exist(self._collection_name)
|
||||
|
||||
|
||||
class OceanBaseVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
attributes: list,
|
||||
embeddings: Embeddings,
|
||||
) -> BaseVector:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
|
||||
collection_name = class_prefix.lower()
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.OCEANBASE, collection_name))
|
||||
return OceanBaseVector(
|
||||
collection_name,
|
||||
OceanBaseVectorConfig(
|
||||
host=dify_config.OCEANBASE_VECTOR_HOST,
|
||||
port=dify_config.OCEANBASE_VECTOR_PORT,
|
||||
user=dify_config.OCEANBASE_VECTOR_USER,
|
||||
password=(dify_config.OCEANBASE_VECTOR_PASSWORD or ""),
|
||||
database=dify_config.OCEANBASE_VECTOR_DATABASE,
|
||||
),
|
||||
)
|
@@ -134,6 +134,10 @@ class Vector:
|
||||
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_on_qdrant_vector import TidbOnQdrantVectorFactory
|
||||
|
||||
return TidbOnQdrantVectorFactory
|
||||
case VectorType.OCEANBASE:
|
||||
from core.rag.datasource.vdb.oceanbase.oceanbase_vector import OceanBaseVectorFactory
|
||||
|
||||
return OceanBaseVectorFactory
|
||||
case _:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
@@ -21,3 +21,4 @@ class VectorType(str, Enum):
|
||||
VIKINGDB = "vikingdb"
|
||||
UPSTASH = "upstash"
|
||||
TIDB_ON_QDRANT = "tidb_on_qdrant"
|
||||
OCEANBASE = "oceanbase"
|
||||
|
Reference in New Issue
Block a user