Feat/support parent child chunk (#12092)
This commit is contained in:
@@ -8,34 +8,34 @@ import time
|
||||
import uuid
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
from flask import Flask, current_app
|
||||
from flask import current_app
|
||||
from flask_login import current_user # type: ignore
|
||||
from sqlalchemy.orm.exc import ObjectDeletedError
|
||||
|
||||
from configs import dify_config
|
||||
from core.entities.knowledge_entities import IndexingEstimate, PreviewDetail, QAPreviewDetail
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
from core.llm_generator.llm_generator import LLMGenerator
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.splitter.fixed_text_splitter import (
|
||||
EnhanceRecursiveCharacterTextSplitter,
|
||||
FixedRecursiveCharacterTextSplitter,
|
||||
)
|
||||
from core.rag.splitter.text_splitter import TextSplitter
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from core.tools.utils.web_reader_tool import get_image_upload_file_ids
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from libs import helper
|
||||
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
from services.feature_service import FeatureService
|
||||
@@ -115,6 +115,9 @@ class IndexingRunner:
|
||||
|
||||
for document_segment in document_segments:
|
||||
db.session.delete(document_segment)
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
# delete child chunks
|
||||
db.session.query(ChildChunk).filter(ChildChunk.segment_id == document_segment.id).delete()
|
||||
db.session.commit()
|
||||
# get the process rule
|
||||
processing_rule = (
|
||||
@@ -183,7 +186,22 @@ class IndexingRunner:
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunks = document_segment.child_chunks
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
for child_chunk in child_chunks:
|
||||
child_document = ChildDocument(
|
||||
page_content=child_chunk.content,
|
||||
metadata={
|
||||
"doc_id": child_chunk.index_node_id,
|
||||
"doc_hash": child_chunk.index_node_hash,
|
||||
"document_id": document_segment.document_id,
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
documents.append(document)
|
||||
|
||||
# build index
|
||||
@@ -222,7 +240,7 @@ class IndexingRunner:
|
||||
doc_language: str = "English",
|
||||
dataset_id: Optional[str] = None,
|
||||
indexing_technique: str = "economy",
|
||||
) -> dict:
|
||||
) -> IndexingEstimate:
|
||||
"""
|
||||
Estimate the indexing for the document.
|
||||
"""
|
||||
@@ -258,31 +276,38 @@ class IndexingRunner:
|
||||
tenant_id=tenant_id,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
)
|
||||
preview_texts: list[str] = []
|
||||
preview_texts = []
|
||||
|
||||
total_segments = 0
|
||||
index_type = doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
all_text_docs = []
|
||||
for extract_setting in extract_settings:
|
||||
# extract
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
all_text_docs.extend(text_docs)
|
||||
processing_rule = DatasetProcessRule(
|
||||
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
|
||||
)
|
||||
|
||||
# get splitter
|
||||
splitter = self._get_splitter(processing_rule, embedding_model_instance)
|
||||
|
||||
# split to documents
|
||||
documents = self._split_to_documents_for_estimate(
|
||||
text_docs=text_docs, splitter=splitter, processing_rule=processing_rule
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=processing_rule.to_dict(),
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
doc_language=doc_language,
|
||||
preview=True,
|
||||
)
|
||||
|
||||
total_segments += len(documents)
|
||||
for document in documents:
|
||||
if len(preview_texts) < 5:
|
||||
preview_texts.append(document.page_content)
|
||||
if len(preview_texts) < 10:
|
||||
if doc_form and doc_form == "qa_model":
|
||||
preview_detail = QAPreviewDetail(
|
||||
question=document.page_content, answer=document.metadata.get("answer")
|
||||
)
|
||||
preview_texts.append(preview_detail)
|
||||
else:
|
||||
preview_detail = PreviewDetail(content=document.page_content)
|
||||
if document.children:
|
||||
preview_detail.child_chunks = [child.page_content for child in document.children]
|
||||
preview_texts.append(preview_detail)
|
||||
|
||||
# delete image files and related db records
|
||||
image_upload_file_ids = get_image_upload_file_ids(document.page_content)
|
||||
@@ -299,15 +324,8 @@ class IndexingRunner:
|
||||
db.session.delete(image_file)
|
||||
|
||||
if doc_form and doc_form == "qa_model":
|
||||
if len(preview_texts) > 0:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(
|
||||
current_user.current_tenant_id, preview_texts[0], doc_language
|
||||
)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
|
||||
return {"total_segments": total_segments * 20, "qa_preview": document_qa_list, "preview": preview_texts}
|
||||
return {"total_segments": total_segments, "preview": preview_texts}
|
||||
return IndexingEstimate(total_segments=total_segments * 20, qa_preview=preview_texts, preview=[])
|
||||
return IndexingEstimate(total_segments=total_segments, preview=preview_texts)
|
||||
|
||||
def _extract(
|
||||
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
|
||||
@@ -401,31 +419,26 @@ class IndexingRunner:
|
||||
|
||||
@staticmethod
|
||||
def _get_splitter(
|
||||
processing_rule: DatasetProcessRule, embedding_model_instance: Optional[ModelInstance]
|
||||
processing_rule_mode: str,
|
||||
max_tokens: int,
|
||||
chunk_overlap: int,
|
||||
separator: str,
|
||||
embedding_model_instance: Optional[ModelInstance],
|
||||
) -> TextSplitter:
|
||||
"""
|
||||
Get the NodeParser object according to the processing rule.
|
||||
"""
|
||||
character_splitter: TextSplitter
|
||||
if processing_rule.mode == "custom":
|
||||
if processing_rule_mode in ["custom", "hierarchical"]:
|
||||
# The user-defined segmentation rule
|
||||
rules = json.loads(processing_rule.rules)
|
||||
segmentation = rules["segmentation"]
|
||||
max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
|
||||
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
|
||||
if max_tokens < 50 or max_tokens > max_segmentation_tokens_length:
|
||||
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
|
||||
|
||||
separator = segmentation["separator"]
|
||||
if separator:
|
||||
separator = separator.replace("\\n", "\n")
|
||||
|
||||
if segmentation.get("chunk_overlap"):
|
||||
chunk_overlap = segmentation["chunk_overlap"]
|
||||
else:
|
||||
chunk_overlap = 0
|
||||
|
||||
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
|
||||
chunk_size=segmentation["max_tokens"],
|
||||
chunk_size=max_tokens,
|
||||
chunk_overlap=chunk_overlap,
|
||||
fixed_separator=separator,
|
||||
separators=["\n\n", "。", ". ", " ", ""],
|
||||
@@ -443,142 +456,6 @@ class IndexingRunner:
|
||||
|
||||
return character_splitter
|
||||
|
||||
def _step_split(
|
||||
self,
|
||||
text_docs: list[Document],
|
||||
splitter: TextSplitter,
|
||||
dataset: Dataset,
|
||||
dataset_document: DatasetDocument,
|
||||
processing_rule: DatasetProcessRule,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into documents and save them to the document segment.
|
||||
"""
|
||||
documents = self._split_to_documents(
|
||||
text_docs=text_docs,
|
||||
splitter=splitter,
|
||||
processing_rule=processing_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
document_form=dataset_document.doc_form,
|
||||
document_language=dataset_document.doc_language,
|
||||
)
|
||||
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(
|
||||
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(documents)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
||||
self._update_document_index_status(
|
||||
document_id=dataset_document.id,
|
||||
after_indexing_status="indexing",
|
||||
extra_update_params={
|
||||
DatasetDocument.cleaning_completed_at: cur_time,
|
||||
DatasetDocument.splitting_completed_at: cur_time,
|
||||
},
|
||||
)
|
||||
|
||||
# update segment status to indexing
|
||||
self._update_segments_by_document(
|
||||
dataset_document_id=dataset_document.id,
|
||||
update_params={
|
||||
DocumentSegment.status: "indexing",
|
||||
DocumentSegment.indexing_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
|
||||
},
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
def _split_to_documents(
|
||||
self,
|
||||
text_docs: list[Document],
|
||||
splitter: TextSplitter,
|
||||
processing_rule: DatasetProcessRule,
|
||||
tenant_id: str,
|
||||
document_form: str,
|
||||
document_language: str,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Split the text documents into nodes.
|
||||
"""
|
||||
all_documents: list[Document] = []
|
||||
all_qa_documents: list[Document] = []
|
||||
for text_doc in text_docs:
|
||||
# document clean
|
||||
document_text = self._document_clean(text_doc.page_content, processing_rule)
|
||||
text_doc.page_content = document_text
|
||||
|
||||
# parse document to nodes
|
||||
documents = splitter.split_documents([text_doc])
|
||||
split_documents = []
|
||||
for document_node in documents:
|
||||
if document_node.page_content.strip():
|
||||
if document_node.metadata is not None:
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata["doc_id"] = doc_id
|
||||
document_node.metadata["doc_hash"] = hash
|
||||
# delete Splitter character
|
||||
page_content = document_node.page_content
|
||||
document_node.page_content = remove_leading_symbols(page_content)
|
||||
|
||||
if document_node.page_content:
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
# processing qa document
|
||||
if document_form == "qa_model":
|
||||
for i in range(0, len(all_documents), 10):
|
||||
threads = []
|
||||
sub_documents = all_documents[i : i + 10]
|
||||
for doc in sub_documents:
|
||||
document_format_thread = threading.Thread(
|
||||
target=self.format_qa_document,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"tenant_id": tenant_id,
|
||||
"document_node": doc,
|
||||
"all_qa_documents": all_qa_documents,
|
||||
"document_language": document_language,
|
||||
},
|
||||
)
|
||||
threads.append(document_format_thread)
|
||||
document_format_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
return all_qa_documents
|
||||
return all_documents
|
||||
|
||||
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
|
||||
format_documents = []
|
||||
if document_node.page_content is None or not document_node.page_content.strip():
|
||||
return
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
# qa model document
|
||||
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
|
||||
document_qa_list = self.format_split_text(response)
|
||||
qa_documents = []
|
||||
for result in document_qa_list:
|
||||
qa_document = Document(
|
||||
page_content=result["question"], metadata=document_node.metadata.model_copy()
|
||||
)
|
||||
if qa_document.metadata is not None:
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(result["question"])
|
||||
qa_document.metadata["answer"] = result["answer"]
|
||||
qa_document.metadata["doc_id"] = doc_id
|
||||
qa_document.metadata["doc_hash"] = hash
|
||||
qa_documents.append(qa_document)
|
||||
format_documents.extend(qa_documents)
|
||||
except Exception as e:
|
||||
logging.exception("Failed to format qa document")
|
||||
|
||||
all_qa_documents.extend(format_documents)
|
||||
|
||||
def _split_to_documents_for_estimate(
|
||||
self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
|
||||
) -> list[Document]:
|
||||
@@ -624,11 +501,11 @@ class IndexingRunner:
|
||||
return document_text
|
||||
|
||||
@staticmethod
|
||||
def format_split_text(text):
|
||||
def format_split_text(text: str) -> list[QAPreviewDetail]:
|
||||
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
|
||||
matches = re.findall(regex, text, re.UNICODE)
|
||||
|
||||
return [{"question": q, "answer": re.sub(r"\n\s*", "\n", a.strip())} for q, a in matches if q and a]
|
||||
return [QAPreviewDetail(question=q, answer=re.sub(r"\n\s*", "\n", a.strip())) for q, a in matches if q and a]
|
||||
|
||||
def _load(
|
||||
self,
|
||||
@@ -654,13 +531,14 @@ class IndexingRunner:
|
||||
indexing_start_at = time.perf_counter()
|
||||
tokens = 0
|
||||
chunk_size = 10
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents),
|
||||
)
|
||||
create_keyword_thread.start()
|
||||
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents), # type: ignore
|
||||
)
|
||||
create_keyword_thread.start()
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
||||
futures = []
|
||||
@@ -680,8 +558,8 @@ class IndexingRunner:
|
||||
|
||||
for future in futures:
|
||||
tokens += future.result()
|
||||
|
||||
create_keyword_thread.join()
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
|
||||
create_keyword_thread.join()
|
||||
indexing_end_at = time.perf_counter()
|
||||
|
||||
# update document status to completed
|
||||
@@ -793,28 +671,6 @@ class IndexingRunner:
|
||||
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
|
||||
db.session.commit()
|
||||
|
||||
@staticmethod
|
||||
def batch_add_segments(segments: list[DocumentSegment], dataset: Dataset):
|
||||
"""
|
||||
Batch add segments index processing
|
||||
"""
|
||||
documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
metadata={
|
||||
"doc_id": segment.index_node_id,
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_type = dataset.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
index_processor.load(dataset, documents)
|
||||
|
||||
def _transform(
|
||||
self,
|
||||
index_processor: BaseIndexProcessor,
|
||||
@@ -856,7 +712,7 @@ class IndexingRunner:
|
||||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(documents)
|
||||
doc_store.add_documents(docs=documents, save_child=dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
|
||||
|
Reference in New Issue
Block a user