external knowledge api (#8913)

Co-authored-by: Yi <yxiaoisme@gmail.com>
This commit is contained in:
Jyong
2024-09-30 15:38:43 +08:00
committed by GitHub
parent 77aef9ff1d
commit 9d221a5e19
90 changed files with 4623 additions and 1171 deletions

View File

@@ -32,6 +32,7 @@ from models.dataset import (
DatasetQuery,
Document,
DocumentSegment,
ExternalKnowledgeBindings,
)
from models.model import UploadFile
from models.source import DataSourceOauthBinding
@@ -39,6 +40,7 @@ from services.errors.account import NoPermissionError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from services.external_knowledge_service import ExternalDatasetService
from services.feature_service import FeatureModel, FeatureService
from services.tag_service import TagService
from services.vector_service import VectorService
@@ -56,10 +58,8 @@ from tasks.sync_website_document_indexing_task import sync_website_document_inde
class DatasetService:
@staticmethod
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
Dataset.created_at.desc()
)
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None):
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
if user:
# get permitted dataset ids
@@ -137,7 +137,14 @@ class DatasetService:
@staticmethod
def create_empty_dataset(
tenant_id: str, name: str, indexing_technique: Optional[str], account: Account, permission: Optional[str] = None
tenant_id: str,
name: str,
indexing_technique: Optional[str],
account: Account,
permission: Optional[str] = None,
provider: str = "vendor",
external_knowledge_api_id: Optional[str] = None,
external_knowledge_id: Optional[str] = None,
):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
@@ -156,12 +163,28 @@ class DatasetService:
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
dataset.embedding_model = embedding_model.model if embedding_model else None
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
dataset.provider = provider
db.session.add(dataset)
db.session.flush()
if provider == "external" and external_knowledge_api_id:
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
if not external_knowledge_api:
raise ValueError("External API template not found.")
external_knowledge_binding = ExternalKnowledgeBindings(
tenant_id=tenant_id,
dataset_id=dataset.id,
external_knowledge_api_id=external_knowledge_api_id,
external_knowledge_id=external_knowledge_id,
created_by=account.id,
)
db.session.add(external_knowledge_binding)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id):
def get_dataset(dataset_id) -> Dataset:
return Dataset.query.filter_by(id=dataset_id).first()
@staticmethod
@@ -202,81 +225,103 @@ class DatasetService:
@staticmethod
def update_dataset(dataset_id, data, user):
data.pop("partial_member_list", None)
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
action = None
if dataset.indexing_technique != data["indexing_technique"]:
# if update indexing_technique
if data["indexing_technique"] == "economy":
action = "remove"
filtered_data["embedding_model"] = None
filtered_data["embedding_model_provider"] = None
filtered_data["collection_binding_id"] = None
elif data["indexing_technique"] == "high_quality":
action = "add"
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if dataset.provider == "external":
dataset.retrieval_model = data.get("external_retrieval_model", None)
dataset.name = data.get("name", dataset.name)
dataset.description = data.get("description", "")
external_knowledge_id = data.get("external_knowledge_id", None)
db.session.add(dataset)
if not external_knowledge_id:
raise ValueError("External knowledge id is required.")
external_knowledge_api_id = data.get("external_knowledge_api_id", None)
if not external_knowledge_api_id:
raise ValueError("External knowledge api id is required.")
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
if (
data["embedding_model_provider"] != dataset.embedding_model_provider
or data["embedding_model"] != dataset.embedding_model
external_knowledge_binding.external_knowledge_id != external_knowledge_id
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
):
action = "update"
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
external_knowledge_binding.external_knowledge_id = external_knowledge_id
external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
db.session.add(external_knowledge_binding)
db.session.commit()
else:
data.pop("partial_member_list", None)
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
action = None
if dataset.indexing_technique != data["indexing_technique"]:
# if update indexing_technique
if data["indexing_technique"] == "economy":
action = "remove"
filtered_data["embedding_model"] = None
filtered_data["embedding_model_provider"] = None
filtered_data["collection_binding_id"] = None
elif data["indexing_technique"] == "high_quality":
action = "add"
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if (
data["embedding_model_provider"] != dataset.embedding_model_provider
or data["embedding_model"] != dataset.embedding_model
):
action = "update"
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
filtered_data["updated_by"] = user.id
filtered_data["updated_at"] = datetime.datetime.now()
filtered_data["updated_by"] = user.id
filtered_data["updated_at"] = datetime.datetime.now()
# update Retrieval model
filtered_data["retrieval_model"] = data["retrieval_model"]
# update Retrieval model
filtered_data["retrieval_model"] = data["retrieval_model"]
dataset.query.filter_by(id=dataset_id).update(filtered_data)
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
return dataset
@staticmethod

View File

@@ -0,0 +1,26 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel
class AuthorizationConfig(BaseModel):
type: Literal[None, "basic", "bearer", "custom"]
api_key: Union[None, str] = None
header: Union[None, str] = None
class Authorization(BaseModel):
type: Literal["no-auth", "api-key"]
config: Optional[AuthorizationConfig] = None
class ProcessStatusSetting(BaseModel):
request_method: str
url: str
class ExternalKnowledgeApiSetting(BaseModel):
url: str
request_method: str
headers: Optional[dict] = None
params: Optional[dict] = None

View File

@@ -0,0 +1,274 @@
import json
from copy import deepcopy
from datetime import datetime, timezone
from typing import Any, Optional, Union
import httpx
import validators
# from tasks.external_document_indexing_task import external_document_indexing_task
from core.helper import ssrf_proxy
from extensions.ext_database import db
from models.dataset import (
Dataset,
ExternalKnowledgeApis,
ExternalKnowledgeBindings,
)
from services.entities.external_knowledge_entities.external_knowledge_entities import (
Authorization,
ExternalKnowledgeApiSetting,
)
from services.errors.dataset import DatasetNameDuplicateError
class ExternalDatasetService:
@staticmethod
def get_external_knowledge_apis(page, per_page, tenant_id, search=None) -> tuple[list[ExternalKnowledgeApis], int]:
query = ExternalKnowledgeApis.query.filter(ExternalKnowledgeApis.tenant_id == tenant_id).order_by(
ExternalKnowledgeApis.created_at.desc()
)
if search:
query = query.filter(ExternalKnowledgeApis.name.ilike(f"%{search}%"))
external_knowledge_apis = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
return external_knowledge_apis.items, external_knowledge_apis.total
@classmethod
def validate_api_list(cls, api_settings: dict):
if not api_settings:
raise ValueError("api list is empty")
if "endpoint" not in api_settings and not api_settings["endpoint"]:
raise ValueError("endpoint is required")
if "api_key" not in api_settings and not api_settings["api_key"]:
raise ValueError("api_key is required")
@staticmethod
def create_external_knowledge_api(tenant_id: str, user_id: str, args: dict) -> ExternalKnowledgeApis:
ExternalDatasetService.check_endpoint_and_api_key(args.get("settings"))
external_knowledge_api = ExternalKnowledgeApis(
tenant_id=tenant_id,
created_by=user_id,
updated_by=user_id,
name=args.get("name"),
description=args.get("description", ""),
settings=json.dumps(args.get("settings"), ensure_ascii=False),
)
db.session.add(external_knowledge_api)
db.session.commit()
return external_knowledge_api
@staticmethod
def check_endpoint_and_api_key(settings: dict):
if "endpoint" not in settings or not settings["endpoint"]:
raise ValueError("endpoint is required")
if "api_key" not in settings or not settings["api_key"]:
raise ValueError("api_key is required")
endpoint = f"{settings['endpoint']}/retrieval"
api_key = settings["api_key"]
if not validators.url(endpoint):
raise ValueError(f"invalid endpoint: {endpoint}")
try:
response = httpx.post(endpoint, headers={"Authorization": f"Bearer {api_key}"})
except Exception as e:
raise ValueError(f"failed to connect to the endpoint: {endpoint}")
if response.status_code == 502:
raise ValueError(f"Bad Gateway: failed to connect to the endpoint: {endpoint}")
if response.status_code == 404:
raise ValueError(f"Not Found: failed to connect to the endpoint: {endpoint}")
if response.status_code == 403:
raise ValueError(f"Forbidden: Authorization failed with api_key: {api_key}")
@staticmethod
def get_external_knowledge_api(external_knowledge_api_id: str) -> ExternalKnowledgeApis:
return ExternalKnowledgeApis.query.filter_by(id=external_knowledge_api_id).first()
@staticmethod
def update_external_knowledge_api(tenant_id, user_id, external_knowledge_api_id, args) -> ExternalKnowledgeApis:
external_knowledge_api = ExternalKnowledgeApis.query.filter_by(
id=external_knowledge_api_id, tenant_id=tenant_id
).first()
if external_knowledge_api is None:
raise ValueError("api template not found")
external_knowledge_api.name = args.get("name")
external_knowledge_api.description = args.get("description", "")
external_knowledge_api.settings = json.dumps(args.get("settings"), ensure_ascii=False)
external_knowledge_api.updated_by = user_id
external_knowledge_api.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
return external_knowledge_api
@staticmethod
def delete_external_knowledge_api(tenant_id: str, external_knowledge_api_id: str):
external_knowledge_api = ExternalKnowledgeApis.query.filter_by(
id=external_knowledge_api_id, tenant_id=tenant_id
).first()
if external_knowledge_api is None:
raise ValueError("api template not found")
db.session.delete(external_knowledge_api)
db.session.commit()
@staticmethod
def external_knowledge_api_use_check(external_knowledge_api_id: str) -> tuple[bool, int]:
count = ExternalKnowledgeBindings.query.filter_by(external_knowledge_api_id=external_knowledge_api_id).count()
if count > 0:
return True, count
return False, 0
@staticmethod
def get_external_knowledge_binding_with_dataset_id(tenant_id: str, dataset_id: str) -> ExternalKnowledgeBindings:
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(
dataset_id=dataset_id, tenant_id=tenant_id
).first()
if not external_knowledge_binding:
raise ValueError("external knowledge binding not found")
return external_knowledge_binding
@staticmethod
def document_create_args_validate(tenant_id: str, external_knowledge_api_id: str, process_parameter: dict):
external_knowledge_api = ExternalKnowledgeApis.query.filter_by(
id=external_knowledge_api_id, tenant_id=tenant_id
).first()
if external_knowledge_api is None:
raise ValueError("api template not found")
settings = json.loads(external_knowledge_api.settings)
for setting in settings:
custom_parameters = setting.get("document_process_setting")
if custom_parameters:
for parameter in custom_parameters:
if parameter.get("required", False) and not process_parameter.get(parameter.get("name")):
raise ValueError(f'{parameter.get("name")} is required')
@staticmethod
def process_external_api(
settings: ExternalKnowledgeApiSetting, files: Union[None, dict[str, Any]]
) -> httpx.Response:
"""
do http request depending on api bundle
"""
kwargs = {
"url": settings.url,
"headers": settings.headers,
"follow_redirects": True,
}
response = getattr(ssrf_proxy, settings.request_method)(data=json.dumps(settings.params), files=files, **kwargs)
return response
@staticmethod
def assembling_headers(authorization: Authorization, headers: Optional[dict] = None) -> dict[str, Any]:
authorization = deepcopy(authorization)
if headers:
headers = deepcopy(headers)
else:
headers = {}
if authorization.type == "api-key":
if authorization.config is None:
raise ValueError("authorization config is required")
if authorization.config.api_key is None:
raise ValueError("api_key is required")
if not authorization.config.header:
authorization.config.header = "Authorization"
if authorization.config.type == "bearer":
headers[authorization.config.header] = f"Bearer {authorization.config.api_key}"
elif authorization.config.type == "basic":
headers[authorization.config.header] = f"Basic {authorization.config.api_key}"
elif authorization.config.type == "custom":
headers[authorization.config.header] = authorization.config.api_key
return headers
@staticmethod
def get_external_knowledge_api_settings(settings: dict) -> ExternalKnowledgeApiSetting:
return ExternalKnowledgeApiSetting.parse_obj(settings)
@staticmethod
def create_external_dataset(tenant_id: str, user_id: str, args: dict) -> Dataset:
# check if dataset name already exists
if Dataset.query.filter_by(name=args.get("name"), tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(f"Dataset with name {args.get('name')} already exists.")
external_knowledge_api = ExternalKnowledgeApis.query.filter_by(
id=args.get("external_knowledge_api_id"), tenant_id=tenant_id
).first()
if external_knowledge_api is None:
raise ValueError("api template not found")
dataset = Dataset(
tenant_id=tenant_id,
name=args.get("name"),
description=args.get("description", ""),
provider="external",
retrieval_model=args.get("external_retrieval_model"),
created_by=user_id,
)
db.session.add(dataset)
db.session.flush()
external_knowledge_binding = ExternalKnowledgeBindings(
tenant_id=tenant_id,
dataset_id=dataset.id,
external_knowledge_api_id=args.get("external_knowledge_api_id"),
external_knowledge_id=args.get("external_knowledge_id"),
created_by=user_id,
)
db.session.add(external_knowledge_binding)
db.session.commit()
return dataset
@staticmethod
def fetch_external_knowledge_retrieval(
tenant_id: str, dataset_id: str, query: str, external_retrieval_parameters: dict
) -> list:
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(
dataset_id=dataset_id, tenant_id=tenant_id
).first()
if not external_knowledge_binding:
raise ValueError("external knowledge binding not found")
external_knowledge_api = ExternalKnowledgeApis.query.filter_by(
id=external_knowledge_binding.external_knowledge_api_id
).first()
if not external_knowledge_api:
raise ValueError("external api template not found")
settings = json.loads(external_knowledge_api.settings)
headers = {"Content-Type": "application/json"}
if settings.get("api_key"):
headers["Authorization"] = f"Bearer {settings.get('api_key')}"
score_threshold_enabled = external_retrieval_parameters.get("score_threshold_enabled") or False
score_threshold = external_retrieval_parameters.get("score_threshold", 0.0) if score_threshold_enabled else 0.0
request_params = {
"retrieval_setting": {
"top_k": external_retrieval_parameters.get("top_k"),
"score_threshold": score_threshold,
},
"query": query,
"knowledge_id": external_knowledge_binding.external_knowledge_id,
}
external_knowledge_api_setting = {
"url": f"{settings.get('endpoint')}/retrieval",
"request_method": "post",
"headers": headers,
"params": request_params,
}
response = ExternalDatasetService.process_external_api(
ExternalKnowledgeApiSetting(**external_knowledge_api_setting), None
)
if response.status_code == 200:
return response.json().get("records", [])
return []

View File

@@ -19,7 +19,15 @@ default_retrieval_model = {
class HitTestingService:
@classmethod
def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
def retrieve(
cls,
dataset: Dataset,
query: str,
account: Account,
retrieval_model: dict,
external_retrieval_model: dict,
limit: int = 10,
) -> dict:
if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
return {
"query": {
@@ -62,10 +70,44 @@ class HitTestingService:
return cls.compact_retrieve_response(dataset, query, all_documents)
@classmethod
def external_retrieve(
cls,
dataset: Dataset,
query: str,
account: Account,
external_retrieval_model: dict,
) -> dict:
if dataset.provider != "external":
return {
"query": {"content": query},
"records": [],
}
start = time.perf_counter()
all_documents = RetrievalService.external_retrieve(
dataset_id=dataset.id,
query=cls.escape_query_for_search(query),
external_retrieval_model=external_retrieval_model,
)
end = time.perf_counter()
logging.debug(f"External knowledge hit testing retrieve in {end - start:0.4f} seconds")
dataset_query = DatasetQuery(
dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
)
db.session.add(dataset_query)
db.session.commit()
return cls.compact_external_retrieve_response(dataset, query, all_documents)
@classmethod
def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
i = 0
records = []
for document in documents:
index_node_id = document.metadata["doc_id"]
@@ -81,7 +123,6 @@ class HitTestingService:
)
if not segment:
i += 1
continue
record = {
@@ -91,8 +132,6 @@ class HitTestingService:
records.append(record)
i += 1
return {
"query": {
"content": query,
@@ -100,6 +139,25 @@ class HitTestingService:
"records": records,
}
@classmethod
def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list):
records = []
if dataset.provider == "external":
for document in documents:
record = {
"content": document.get("content", None),
"title": document.get("title", None),
"score": document.get("score", None),
"metadata": document.get("metadata", None),
}
records.append(record)
return {
"query": {
"content": query,
},
"records": records,
}
@classmethod
def hit_testing_args_check(cls, args):
query = args["query"]