feat: Add Aliyun LLM Observability Integration (#21471)
This commit is contained in:
0
api/core/ops/aliyun_trace/__init__.py
Normal file
0
api/core/ops/aliyun_trace/__init__.py
Normal file
486
api/core/ops/aliyun_trace/aliyun_trace.py
Normal file
486
api/core/ops/aliyun_trace/aliyun_trace.py
Normal file
@@ -0,0 +1,486 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Sequence
|
||||
from typing import Optional
|
||||
from urllib.parse import urljoin
|
||||
|
||||
from opentelemetry.trace import Status, StatusCode
|
||||
from sqlalchemy.orm import Session, sessionmaker
|
||||
|
||||
from core.ops.aliyun_trace.data_exporter.traceclient import (
|
||||
TraceClient,
|
||||
convert_datetime_to_nanoseconds,
|
||||
convert_to_span_id,
|
||||
convert_to_trace_id,
|
||||
generate_span_id,
|
||||
)
|
||||
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData
|
||||
from core.ops.aliyun_trace.entities.semconv import (
|
||||
GEN_AI_COMPLETION,
|
||||
GEN_AI_FRAMEWORK,
|
||||
GEN_AI_MODEL_NAME,
|
||||
GEN_AI_PROMPT,
|
||||
GEN_AI_PROMPT_TEMPLATE_TEMPLATE,
|
||||
GEN_AI_PROMPT_TEMPLATE_VARIABLE,
|
||||
GEN_AI_RESPONSE_FINISH_REASON,
|
||||
GEN_AI_SESSION_ID,
|
||||
GEN_AI_SPAN_KIND,
|
||||
GEN_AI_SYSTEM,
|
||||
GEN_AI_USAGE_INPUT_TOKENS,
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS,
|
||||
GEN_AI_USAGE_TOTAL_TOKENS,
|
||||
GEN_AI_USER_ID,
|
||||
INPUT_VALUE,
|
||||
OUTPUT_VALUE,
|
||||
RETRIEVAL_DOCUMENT,
|
||||
RETRIEVAL_QUERY,
|
||||
TOOL_DESCRIPTION,
|
||||
TOOL_NAME,
|
||||
TOOL_PARAMETERS,
|
||||
GenAISpanKind,
|
||||
)
|
||||
from core.ops.base_trace_instance import BaseTraceInstance
|
||||
from core.ops.entities.config_entity import AliyunConfig
|
||||
from core.ops.entities.trace_entity import (
|
||||
BaseTraceInfo,
|
||||
DatasetRetrievalTraceInfo,
|
||||
GenerateNameTraceInfo,
|
||||
MessageTraceInfo,
|
||||
ModerationTraceInfo,
|
||||
SuggestedQuestionTraceInfo,
|
||||
ToolTraceInfo,
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from core.rag.models.document import Document
|
||||
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
|
||||
from core.workflow.entities.workflow_node_execution import (
|
||||
WorkflowNodeExecution,
|
||||
WorkflowNodeExecutionMetadataKey,
|
||||
WorkflowNodeExecutionStatus,
|
||||
)
|
||||
from core.workflow.nodes import NodeType
|
||||
from models import Account, App, EndUser, TenantAccountJoin, WorkflowNodeExecutionTriggeredFrom, db
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AliyunDataTrace(BaseTraceInstance):
|
||||
def __init__(
|
||||
self,
|
||||
aliyun_config: AliyunConfig,
|
||||
):
|
||||
super().__init__(aliyun_config)
|
||||
base_url = aliyun_config.endpoint.rstrip("/")
|
||||
endpoint = urljoin(base_url, f"adapt_{aliyun_config.license_key}/api/otlp/traces")
|
||||
self.trace_client = TraceClient(service_name=aliyun_config.app_name, endpoint=endpoint)
|
||||
|
||||
def trace(self, trace_info: BaseTraceInfo):
|
||||
if isinstance(trace_info, WorkflowTraceInfo):
|
||||
self.workflow_trace(trace_info)
|
||||
if isinstance(trace_info, MessageTraceInfo):
|
||||
self.message_trace(trace_info)
|
||||
if isinstance(trace_info, ModerationTraceInfo):
|
||||
pass
|
||||
if isinstance(trace_info, SuggestedQuestionTraceInfo):
|
||||
self.suggested_question_trace(trace_info)
|
||||
if isinstance(trace_info, DatasetRetrievalTraceInfo):
|
||||
self.dataset_retrieval_trace(trace_info)
|
||||
if isinstance(trace_info, ToolTraceInfo):
|
||||
self.tool_trace(trace_info)
|
||||
if isinstance(trace_info, GenerateNameTraceInfo):
|
||||
pass
|
||||
|
||||
def api_check(self):
|
||||
return self.trace_client.api_check()
|
||||
|
||||
def get_project_url(self):
|
||||
try:
|
||||
return self.trace_client.get_project_url()
|
||||
except Exception as e:
|
||||
logger.info(f"Aliyun get run url failed: {str(e)}", exc_info=True)
|
||||
raise ValueError(f"Aliyun get run url failed: {str(e)}")
|
||||
|
||||
def workflow_trace(self, trace_info: WorkflowTraceInfo):
|
||||
trace_id = convert_to_trace_id(trace_info.workflow_run_id)
|
||||
workflow_span_id = convert_to_span_id(trace_info.workflow_run_id, "workflow")
|
||||
self.add_workflow_span(trace_id, workflow_span_id, trace_info)
|
||||
|
||||
workflow_node_executions = self.get_workflow_node_executions(trace_info)
|
||||
for node_execution in workflow_node_executions:
|
||||
node_span = self.build_workflow_node_span(node_execution, trace_id, trace_info, workflow_span_id)
|
||||
self.trace_client.add_span(node_span)
|
||||
|
||||
def message_trace(self, trace_info: MessageTraceInfo):
|
||||
message_data = trace_info.message_data
|
||||
if message_data is None:
|
||||
return
|
||||
message_id = trace_info.message_id
|
||||
|
||||
user_id = message_data.from_account_id
|
||||
if message_data.from_end_user_id:
|
||||
end_user_data: Optional[EndUser] = (
|
||||
db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()
|
||||
)
|
||||
if end_user_data is not None:
|
||||
user_id = end_user_data.session_id
|
||||
|
||||
status: Status = Status(StatusCode.OK)
|
||||
if trace_info.error:
|
||||
status = Status(StatusCode.ERROR, trace_info.error)
|
||||
|
||||
trace_id = convert_to_trace_id(message_id)
|
||||
message_span_id = convert_to_span_id(message_id, "message")
|
||||
message_span = SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=None,
|
||||
span_id=message_span_id,
|
||||
name="message",
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
|
||||
GEN_AI_USER_ID: str(user_id),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
OUTPUT_VALUE: str(trace_info.outputs),
|
||||
},
|
||||
status=status,
|
||||
)
|
||||
self.trace_client.add_span(message_span)
|
||||
|
||||
app_model_config = getattr(trace_info.message_data, "app_model_config", {})
|
||||
pre_prompt = getattr(app_model_config, "pre_prompt", "")
|
||||
inputs_data = getattr(trace_info.message_data, "inputs", {})
|
||||
llm_span = SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=message_span_id,
|
||||
span_id=convert_to_span_id(message_id, "llm"),
|
||||
name="llm",
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
|
||||
GEN_AI_USER_ID: str(user_id),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
GEN_AI_MODEL_NAME: trace_info.metadata.get("ls_model_name", ""),
|
||||
GEN_AI_SYSTEM: trace_info.metadata.get("ls_provider", ""),
|
||||
GEN_AI_USAGE_INPUT_TOKENS: str(trace_info.message_tokens),
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS: str(trace_info.answer_tokens),
|
||||
GEN_AI_USAGE_TOTAL_TOKENS: str(trace_info.total_tokens),
|
||||
GEN_AI_PROMPT_TEMPLATE_VARIABLE: json.dumps(inputs_data, ensure_ascii=False),
|
||||
GEN_AI_PROMPT_TEMPLATE_TEMPLATE: pre_prompt,
|
||||
GEN_AI_PROMPT: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
GEN_AI_COMPLETION: str(trace_info.outputs),
|
||||
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
OUTPUT_VALUE: str(trace_info.outputs),
|
||||
},
|
||||
status=status,
|
||||
)
|
||||
self.trace_client.add_span(llm_span)
|
||||
|
||||
def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
return
|
||||
message_id = trace_info.message_id
|
||||
|
||||
documents_data = extract_retrieval_documents(trace_info.documents)
|
||||
dataset_retrieval_span = SpanData(
|
||||
trace_id=convert_to_trace_id(message_id),
|
||||
parent_span_id=convert_to_span_id(message_id, "message"),
|
||||
span_id=generate_span_id(),
|
||||
name="dataset_retrieval",
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.RETRIEVER.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
RETRIEVAL_QUERY: str(trace_info.inputs),
|
||||
RETRIEVAL_DOCUMENT: json.dumps(documents_data, ensure_ascii=False),
|
||||
INPUT_VALUE: str(trace_info.inputs),
|
||||
OUTPUT_VALUE: json.dumps(documents_data, ensure_ascii=False),
|
||||
},
|
||||
)
|
||||
self.trace_client.add_span(dataset_retrieval_span)
|
||||
|
||||
def tool_trace(self, trace_info: ToolTraceInfo):
|
||||
if trace_info.message_data is None:
|
||||
return
|
||||
message_id = trace_info.message_id
|
||||
|
||||
status: Status = Status(StatusCode.OK)
|
||||
if trace_info.error:
|
||||
status = Status(StatusCode.ERROR, trace_info.error)
|
||||
|
||||
tool_span = SpanData(
|
||||
trace_id=convert_to_trace_id(message_id),
|
||||
parent_span_id=convert_to_span_id(message_id, "message"),
|
||||
span_id=generate_span_id(),
|
||||
name=trace_info.tool_name,
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.TOOL.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
TOOL_NAME: trace_info.tool_name,
|
||||
TOOL_DESCRIPTION: json.dumps(trace_info.tool_config, ensure_ascii=False),
|
||||
TOOL_PARAMETERS: json.dumps(trace_info.tool_inputs, ensure_ascii=False),
|
||||
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
OUTPUT_VALUE: str(trace_info.tool_outputs),
|
||||
},
|
||||
status=status,
|
||||
)
|
||||
self.trace_client.add_span(tool_span)
|
||||
|
||||
def get_workflow_node_executions(self, trace_info: WorkflowTraceInfo) -> Sequence[WorkflowNodeExecution]:
|
||||
# through workflow_run_id get all_nodes_execution using repository
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
# Find the app's creator account
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
# Get the app to find its creator
|
||||
app_id = trace_info.metadata.get("app_id")
|
||||
if not app_id:
|
||||
raise ValueError("No app_id found in trace_info metadata")
|
||||
|
||||
app = session.query(App).filter(App.id == app_id).first()
|
||||
if not app:
|
||||
raise ValueError(f"App with id {app_id} not found")
|
||||
|
||||
if not app.created_by:
|
||||
raise ValueError(f"App with id {app_id} has no creator (created_by is None)")
|
||||
|
||||
service_account = session.query(Account).filter(Account.id == app.created_by).first()
|
||||
if not service_account:
|
||||
raise ValueError(f"Creator account with id {app.created_by} not found for app {app_id}")
|
||||
current_tenant = (
|
||||
session.query(TenantAccountJoin).filter_by(account_id=service_account.id, current=True).first()
|
||||
)
|
||||
if not current_tenant:
|
||||
raise ValueError(f"Current tenant not found for account {service_account.id}")
|
||||
service_account.set_tenant_id(current_tenant.tenant_id)
|
||||
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
|
||||
session_factory=session_factory,
|
||||
user=service_account,
|
||||
app_id=trace_info.metadata.get("app_id"),
|
||||
triggered_from=WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN,
|
||||
)
|
||||
# Get all executions for this workflow run
|
||||
workflow_node_executions = workflow_node_execution_repository.get_by_workflow_run(
|
||||
workflow_run_id=trace_info.workflow_run_id
|
||||
)
|
||||
return workflow_node_executions
|
||||
|
||||
def build_workflow_node_span(
|
||||
self, node_execution: WorkflowNodeExecution, trace_id: int, trace_info: WorkflowTraceInfo, workflow_span_id: int
|
||||
):
|
||||
try:
|
||||
if node_execution.node_type == NodeType.LLM:
|
||||
node_span = self.build_workflow_llm_span(trace_id, workflow_span_id, trace_info, node_execution)
|
||||
elif node_execution.node_type == NodeType.KNOWLEDGE_RETRIEVAL:
|
||||
node_span = self.build_workflow_retrieval_span(trace_id, workflow_span_id, trace_info, node_execution)
|
||||
elif node_execution.node_type == NodeType.TOOL:
|
||||
node_span = self.build_workflow_tool_span(trace_id, workflow_span_id, trace_info, node_execution)
|
||||
else:
|
||||
node_span = self.build_workflow_task_span(trace_id, workflow_span_id, trace_info, node_execution)
|
||||
return node_span
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def get_workflow_node_status(self, node_execution: WorkflowNodeExecution) -> Status:
|
||||
span_status: Status = Status(StatusCode.UNSET)
|
||||
if node_execution.status == WorkflowNodeExecutionStatus.SUCCEEDED:
|
||||
span_status = Status(StatusCode.OK)
|
||||
elif node_execution.status in [WorkflowNodeExecutionStatus.FAILED, WorkflowNodeExecutionStatus.EXCEPTION]:
|
||||
span_status = Status(StatusCode.ERROR, str(node_execution.error))
|
||||
return span_status
|
||||
|
||||
def build_workflow_task_span(
|
||||
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
|
||||
) -> SpanData:
|
||||
return SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=workflow_span_id,
|
||||
span_id=convert_to_span_id(node_execution.id, "node"),
|
||||
name=node_execution.title,
|
||||
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
|
||||
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
|
||||
attributes={
|
||||
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.TASK.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
INPUT_VALUE: json.dumps(node_execution.inputs, ensure_ascii=False),
|
||||
OUTPUT_VALUE: json.dumps(node_execution.outputs, ensure_ascii=False),
|
||||
},
|
||||
status=self.get_workflow_node_status(node_execution),
|
||||
)
|
||||
|
||||
def build_workflow_tool_span(
|
||||
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
|
||||
) -> SpanData:
|
||||
tool_des = {}
|
||||
if node_execution.metadata:
|
||||
tool_des = node_execution.metadata.get(WorkflowNodeExecutionMetadataKey.TOOL_INFO, {})
|
||||
return SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=workflow_span_id,
|
||||
span_id=convert_to_span_id(node_execution.id, "node"),
|
||||
name=node_execution.title,
|
||||
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
|
||||
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
|
||||
attributes={
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.TOOL.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
TOOL_NAME: node_execution.title,
|
||||
TOOL_DESCRIPTION: json.dumps(tool_des, ensure_ascii=False),
|
||||
TOOL_PARAMETERS: json.dumps(node_execution.inputs if node_execution.inputs else {}, ensure_ascii=False),
|
||||
INPUT_VALUE: json.dumps(node_execution.inputs if node_execution.inputs else {}, ensure_ascii=False),
|
||||
OUTPUT_VALUE: json.dumps(node_execution.outputs, ensure_ascii=False),
|
||||
},
|
||||
status=self.get_workflow_node_status(node_execution),
|
||||
)
|
||||
|
||||
def build_workflow_retrieval_span(
|
||||
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
|
||||
) -> SpanData:
|
||||
input_value = ""
|
||||
if node_execution.inputs:
|
||||
input_value = str(node_execution.inputs.get("query", ""))
|
||||
output_value = ""
|
||||
if node_execution.outputs:
|
||||
output_value = json.dumps(node_execution.outputs.get("result", []), ensure_ascii=False)
|
||||
return SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=workflow_span_id,
|
||||
span_id=convert_to_span_id(node_execution.id, "node"),
|
||||
name=node_execution.title,
|
||||
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
|
||||
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
|
||||
attributes={
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.RETRIEVER.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
RETRIEVAL_QUERY: input_value,
|
||||
RETRIEVAL_DOCUMENT: output_value,
|
||||
INPUT_VALUE: input_value,
|
||||
OUTPUT_VALUE: output_value,
|
||||
},
|
||||
status=self.get_workflow_node_status(node_execution),
|
||||
)
|
||||
|
||||
def build_workflow_llm_span(
|
||||
self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo, node_execution: WorkflowNodeExecution
|
||||
) -> SpanData:
|
||||
process_data = node_execution.process_data or {}
|
||||
outputs = node_execution.outputs or {}
|
||||
return SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=workflow_span_id,
|
||||
span_id=convert_to_span_id(node_execution.id, "node"),
|
||||
name=node_execution.title,
|
||||
start_time=convert_datetime_to_nanoseconds(node_execution.created_at),
|
||||
end_time=convert_datetime_to_nanoseconds(node_execution.finished_at),
|
||||
attributes={
|
||||
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
GEN_AI_MODEL_NAME: process_data.get("model_name", ""),
|
||||
GEN_AI_SYSTEM: process_data.get("model_provider", ""),
|
||||
GEN_AI_USAGE_INPUT_TOKENS: str(outputs.get("usage", {}).get("prompt_tokens", 0)),
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS: str(outputs.get("usage", {}).get("completion_tokens", 0)),
|
||||
GEN_AI_USAGE_TOTAL_TOKENS: str(outputs.get("usage", {}).get("total_tokens", 0)),
|
||||
GEN_AI_PROMPT: json.dumps(process_data.get("prompts", []), ensure_ascii=False),
|
||||
GEN_AI_COMPLETION: str(outputs.get("text", "")),
|
||||
GEN_AI_RESPONSE_FINISH_REASON: outputs.get("finish_reason", ""),
|
||||
INPUT_VALUE: json.dumps(process_data.get("prompts", []), ensure_ascii=False),
|
||||
OUTPUT_VALUE: str(outputs.get("text", "")),
|
||||
},
|
||||
status=self.get_workflow_node_status(node_execution),
|
||||
)
|
||||
|
||||
def add_workflow_span(self, trace_id: int, workflow_span_id: int, trace_info: WorkflowTraceInfo):
|
||||
message_span_id = None
|
||||
if trace_info.message_id:
|
||||
message_span_id = convert_to_span_id(trace_info.message_id, "message")
|
||||
user_id = trace_info.metadata.get("user_id")
|
||||
status: Status = Status(StatusCode.OK)
|
||||
if trace_info.error:
|
||||
status = Status(StatusCode.ERROR, trace_info.error)
|
||||
if message_span_id: # chatflow
|
||||
message_span = SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=None,
|
||||
span_id=message_span_id,
|
||||
name="message",
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_SESSION_ID: trace_info.metadata.get("conversation_id", ""),
|
||||
GEN_AI_USER_ID: str(user_id),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
INPUT_VALUE: trace_info.workflow_run_inputs.get("sys.query", ""),
|
||||
OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
|
||||
},
|
||||
status=status,
|
||||
)
|
||||
self.trace_client.add_span(message_span)
|
||||
|
||||
workflow_span = SpanData(
|
||||
trace_id=trace_id,
|
||||
parent_span_id=message_span_id,
|
||||
span_id=workflow_span_id,
|
||||
name="workflow",
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_USER_ID: str(user_id),
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.CHAIN.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
INPUT_VALUE: json.dumps(trace_info.workflow_run_inputs, ensure_ascii=False),
|
||||
OUTPUT_VALUE: json.dumps(trace_info.workflow_run_outputs, ensure_ascii=False),
|
||||
},
|
||||
status=status,
|
||||
)
|
||||
self.trace_client.add_span(workflow_span)
|
||||
|
||||
def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
|
||||
message_id = trace_info.message_id
|
||||
status: Status = Status(StatusCode.OK)
|
||||
if trace_info.error:
|
||||
status = Status(StatusCode.ERROR, trace_info.error)
|
||||
suggested_question_span = SpanData(
|
||||
trace_id=convert_to_trace_id(message_id),
|
||||
parent_span_id=convert_to_span_id(message_id, "message"),
|
||||
span_id=convert_to_span_id(message_id, "suggested_question"),
|
||||
name="suggested_question",
|
||||
start_time=convert_datetime_to_nanoseconds(trace_info.start_time),
|
||||
end_time=convert_datetime_to_nanoseconds(trace_info.end_time),
|
||||
attributes={
|
||||
GEN_AI_SPAN_KIND: GenAISpanKind.LLM.value,
|
||||
GEN_AI_FRAMEWORK: "dify",
|
||||
GEN_AI_MODEL_NAME: trace_info.metadata.get("ls_model_name", ""),
|
||||
GEN_AI_SYSTEM: trace_info.metadata.get("ls_provider", ""),
|
||||
GEN_AI_PROMPT: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
GEN_AI_COMPLETION: json.dumps(trace_info.suggested_question, ensure_ascii=False),
|
||||
INPUT_VALUE: json.dumps(trace_info.inputs, ensure_ascii=False),
|
||||
OUTPUT_VALUE: json.dumps(trace_info.suggested_question, ensure_ascii=False),
|
||||
},
|
||||
status=status,
|
||||
)
|
||||
self.trace_client.add_span(suggested_question_span)
|
||||
|
||||
|
||||
def extract_retrieval_documents(documents: list[Document]):
|
||||
documents_data = []
|
||||
for document in documents:
|
||||
document_data = {
|
||||
"content": document.page_content,
|
||||
"metadata": {
|
||||
"dataset_id": document.metadata.get("dataset_id"),
|
||||
"doc_id": document.metadata.get("doc_id"),
|
||||
"document_id": document.metadata.get("document_id"),
|
||||
},
|
||||
"score": document.metadata.get("score"),
|
||||
}
|
||||
documents_data.append(document_data)
|
||||
return documents_data
|
0
api/core/ops/aliyun_trace/data_exporter/__init__.py
Normal file
0
api/core/ops/aliyun_trace/data_exporter/__init__.py
Normal file
200
api/core/ops/aliyun_trace/data_exporter/traceclient.py
Normal file
200
api/core/ops/aliyun_trace/data_exporter/traceclient.py
Normal file
@@ -0,0 +1,200 @@
|
||||
import hashlib
|
||||
import logging
|
||||
import random
|
||||
import socket
|
||||
import threading
|
||||
import uuid
|
||||
from collections import deque
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
from opentelemetry import trace as trace_api
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
||||
from opentelemetry.sdk.resources import Resource
|
||||
from opentelemetry.sdk.trace import ReadableSpan
|
||||
from opentelemetry.sdk.util.instrumentation import InstrumentationScope
|
||||
from opentelemetry.semconv.resource import ResourceAttributes
|
||||
|
||||
from configs import dify_config
|
||||
from core.ops.aliyun_trace.entities.aliyun_trace_entity import SpanData
|
||||
|
||||
INVALID_SPAN_ID = 0x0000000000000000
|
||||
INVALID_TRACE_ID = 0x00000000000000000000000000000000
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TraceClient:
|
||||
def __init__(
|
||||
self,
|
||||
service_name: str,
|
||||
endpoint: str,
|
||||
max_queue_size: int = 1000,
|
||||
schedule_delay_sec: int = 5,
|
||||
max_export_batch_size: int = 50,
|
||||
):
|
||||
self.endpoint = endpoint
|
||||
self.resource = Resource(
|
||||
attributes={
|
||||
ResourceAttributes.SERVICE_NAME: service_name,
|
||||
ResourceAttributes.SERVICE_VERSION: f"dify-{dify_config.project.version}-{dify_config.COMMIT_SHA}",
|
||||
ResourceAttributes.DEPLOYMENT_ENVIRONMENT: f"{dify_config.DEPLOY_ENV}-{dify_config.EDITION}",
|
||||
ResourceAttributes.HOST_NAME: socket.gethostname(),
|
||||
}
|
||||
)
|
||||
self.span_builder = SpanBuilder(self.resource)
|
||||
self.exporter = OTLPSpanExporter(endpoint=endpoint)
|
||||
|
||||
self.max_queue_size = max_queue_size
|
||||
self.schedule_delay_sec = schedule_delay_sec
|
||||
self.max_export_batch_size = max_export_batch_size
|
||||
|
||||
self.queue: deque = deque(maxlen=max_queue_size)
|
||||
self.condition = threading.Condition(threading.Lock())
|
||||
self.done = False
|
||||
|
||||
self.worker_thread = threading.Thread(target=self._worker, daemon=True)
|
||||
self.worker_thread.start()
|
||||
|
||||
self._spans_dropped = False
|
||||
|
||||
def export(self, spans: Sequence[ReadableSpan]):
|
||||
self.exporter.export(spans)
|
||||
|
||||
def api_check(self):
|
||||
try:
|
||||
response = requests.head(self.endpoint, timeout=5)
|
||||
if response.status_code == 405:
|
||||
return True
|
||||
else:
|
||||
logger.debug(f"AliyunTrace API check failed: Unexpected status code: {response.status_code}")
|
||||
return False
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.debug(f"AliyunTrace API check failed: {str(e)}")
|
||||
raise ValueError(f"AliyunTrace API check failed: {str(e)}")
|
||||
|
||||
def get_project_url(self):
|
||||
return "https://arms.console.aliyun.com/#/llm"
|
||||
|
||||
def add_span(self, span_data: SpanData):
|
||||
if span_data is None:
|
||||
return
|
||||
span: ReadableSpan = self.span_builder.build_span(span_data)
|
||||
with self.condition:
|
||||
if len(self.queue) == self.max_queue_size:
|
||||
if not self._spans_dropped:
|
||||
logger.warning("Queue is full, likely spans will be dropped.")
|
||||
self._spans_dropped = True
|
||||
|
||||
self.queue.appendleft(span)
|
||||
if len(self.queue) >= self.max_export_batch_size:
|
||||
self.condition.notify()
|
||||
|
||||
def _worker(self):
|
||||
while not self.done:
|
||||
with self.condition:
|
||||
if len(self.queue) < self.max_export_batch_size and not self.done:
|
||||
self.condition.wait(timeout=self.schedule_delay_sec)
|
||||
self._export_batch()
|
||||
|
||||
def _export_batch(self):
|
||||
spans_to_export: list[ReadableSpan] = []
|
||||
with self.condition:
|
||||
while len(spans_to_export) < self.max_export_batch_size and self.queue:
|
||||
spans_to_export.append(self.queue.pop())
|
||||
|
||||
if spans_to_export:
|
||||
try:
|
||||
self.exporter.export(spans_to_export)
|
||||
except Exception as e:
|
||||
logger.debug(f"Error exporting spans: {e}")
|
||||
|
||||
def shutdown(self):
|
||||
with self.condition:
|
||||
self.done = True
|
||||
self.condition.notify_all()
|
||||
self.worker_thread.join()
|
||||
self._export_batch()
|
||||
self.exporter.shutdown()
|
||||
|
||||
|
||||
class SpanBuilder:
|
||||
def __init__(self, resource):
|
||||
self.resource = resource
|
||||
self.instrumentation_scope = InstrumentationScope(
|
||||
__name__,
|
||||
"",
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
def build_span(self, span_data: SpanData) -> ReadableSpan:
|
||||
span_context = trace_api.SpanContext(
|
||||
trace_id=span_data.trace_id,
|
||||
span_id=span_data.span_id,
|
||||
is_remote=False,
|
||||
trace_flags=trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED),
|
||||
trace_state=None,
|
||||
)
|
||||
|
||||
parent_span_context = None
|
||||
if span_data.parent_span_id is not None:
|
||||
parent_span_context = trace_api.SpanContext(
|
||||
trace_id=span_data.trace_id,
|
||||
span_id=span_data.parent_span_id,
|
||||
is_remote=False,
|
||||
trace_flags=trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED),
|
||||
trace_state=None,
|
||||
)
|
||||
|
||||
span = ReadableSpan(
|
||||
name=span_data.name,
|
||||
context=span_context,
|
||||
parent=parent_span_context,
|
||||
resource=self.resource,
|
||||
attributes=span_data.attributes,
|
||||
events=span_data.events,
|
||||
links=span_data.links,
|
||||
kind=trace_api.SpanKind.INTERNAL,
|
||||
status=span_data.status,
|
||||
start_time=span_data.start_time,
|
||||
end_time=span_data.end_time,
|
||||
instrumentation_scope=self.instrumentation_scope,
|
||||
)
|
||||
return span
|
||||
|
||||
|
||||
def generate_span_id() -> int:
|
||||
span_id = random.getrandbits(64)
|
||||
while span_id == INVALID_SPAN_ID:
|
||||
span_id = random.getrandbits(64)
|
||||
return span_id
|
||||
|
||||
|
||||
def convert_to_trace_id(uuid_v4: Optional[str]) -> int:
|
||||
try:
|
||||
uuid_obj = uuid.UUID(uuid_v4)
|
||||
return uuid_obj.int
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid UUID input: {e}")
|
||||
|
||||
|
||||
def convert_to_span_id(uuid_v4: Optional[str], span_type: str) -> int:
|
||||
try:
|
||||
uuid_obj = uuid.UUID(uuid_v4)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid UUID input: {e}")
|
||||
combined_key = f"{uuid_obj.hex}-{span_type}"
|
||||
hash_bytes = hashlib.sha256(combined_key.encode("utf-8")).digest()
|
||||
span_id = int.from_bytes(hash_bytes[:8], byteorder="big", signed=False)
|
||||
return span_id
|
||||
|
||||
|
||||
def convert_datetime_to_nanoseconds(start_time_a: Optional[datetime]) -> Optional[int]:
|
||||
if start_time_a is None:
|
||||
return None
|
||||
timestamp_in_seconds = start_time_a.timestamp()
|
||||
timestamp_in_nanoseconds = int(timestamp_in_seconds * 1e9)
|
||||
return timestamp_in_nanoseconds
|
0
api/core/ops/aliyun_trace/entities/__init__.py
Normal file
0
api/core/ops/aliyun_trace/entities/__init__.py
Normal file
21
api/core/ops/aliyun_trace/entities/aliyun_trace_entity.py
Normal file
21
api/core/ops/aliyun_trace/entities/aliyun_trace_entity.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Optional
|
||||
|
||||
from opentelemetry import trace as trace_api
|
||||
from opentelemetry.sdk.trace import Event, Status, StatusCode
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class SpanData(BaseModel):
|
||||
model_config = {"arbitrary_types_allowed": True}
|
||||
|
||||
trace_id: int = Field(..., description="The unique identifier for the trace.")
|
||||
parent_span_id: Optional[int] = Field(None, description="The ID of the parent span, if any.")
|
||||
span_id: int = Field(..., description="The unique identifier for this span.")
|
||||
name: str = Field(..., description="The name of the span.")
|
||||
attributes: dict[str, str] = Field(default_factory=dict, description="Attributes associated with the span.")
|
||||
events: Sequence[Event] = Field(default_factory=list, description="Events recorded in the span.")
|
||||
links: Sequence[trace_api.Link] = Field(default_factory=list, description="Links to other spans.")
|
||||
status: Status = Field(default=Status(StatusCode.UNSET), description="The status of the span.")
|
||||
start_time: Optional[int] = Field(..., description="The start time of the span in nanoseconds.")
|
||||
end_time: Optional[int] = Field(..., description="The end time of the span in nanoseconds.")
|
64
api/core/ops/aliyun_trace/entities/semconv.py
Normal file
64
api/core/ops/aliyun_trace/entities/semconv.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from enum import Enum
|
||||
|
||||
# public
|
||||
GEN_AI_SESSION_ID = "gen_ai.session.id"
|
||||
|
||||
GEN_AI_USER_ID = "gen_ai.user.id"
|
||||
|
||||
GEN_AI_USER_NAME = "gen_ai.user.name"
|
||||
|
||||
GEN_AI_SPAN_KIND = "gen_ai.span.kind"
|
||||
|
||||
GEN_AI_FRAMEWORK = "gen_ai.framework"
|
||||
|
||||
|
||||
# Chain
|
||||
INPUT_VALUE = "input.value"
|
||||
|
||||
OUTPUT_VALUE = "output.value"
|
||||
|
||||
|
||||
# Retriever
|
||||
RETRIEVAL_QUERY = "retrieval.query"
|
||||
|
||||
RETRIEVAL_DOCUMENT = "retrieval.document"
|
||||
|
||||
|
||||
# LLM
|
||||
GEN_AI_MODEL_NAME = "gen_ai.model_name"
|
||||
|
||||
GEN_AI_SYSTEM = "gen_ai.system"
|
||||
|
||||
GEN_AI_USAGE_INPUT_TOKENS = "gen_ai.usage.input_tokens"
|
||||
|
||||
GEN_AI_USAGE_OUTPUT_TOKENS = "gen_ai.usage.output_tokens"
|
||||
|
||||
GEN_AI_USAGE_TOTAL_TOKENS = "gen_ai.usage.total_tokens"
|
||||
|
||||
GEN_AI_PROMPT_TEMPLATE_TEMPLATE = "gen_ai.prompt_template.template"
|
||||
|
||||
GEN_AI_PROMPT_TEMPLATE_VARIABLE = "gen_ai.prompt_template.variable"
|
||||
|
||||
GEN_AI_PROMPT = "gen_ai.prompt"
|
||||
|
||||
GEN_AI_COMPLETION = "gem_ai.completion"
|
||||
|
||||
GEN_AI_RESPONSE_FINISH_REASON = "gen_ai.response.finish_reason"
|
||||
|
||||
# Tool
|
||||
TOOL_NAME = "tool.name"
|
||||
|
||||
TOOL_DESCRIPTION = "tool.description"
|
||||
|
||||
TOOL_PARAMETERS = "tool.parameters"
|
||||
|
||||
|
||||
class GenAISpanKind(Enum):
|
||||
CHAIN = "CHAIN"
|
||||
RETRIEVER = "RETRIEVER"
|
||||
RERANKER = "RERANKER"
|
||||
LLM = "LLM"
|
||||
EMBEDDING = "EMBEDDING"
|
||||
TOOL = "TOOL"
|
||||
AGENT = "AGENT"
|
||||
TASK = "TASK"
|
@@ -10,6 +10,7 @@ class TracingProviderEnum(StrEnum):
|
||||
LANGSMITH = "langsmith"
|
||||
OPIK = "opik"
|
||||
WEAVE = "weave"
|
||||
ALIYUN = "aliyun"
|
||||
|
||||
|
||||
class BaseTracingConfig(BaseModel):
|
||||
@@ -184,5 +185,15 @@ class WeaveConfig(BaseTracingConfig):
|
||||
return v
|
||||
|
||||
|
||||
class AliyunConfig(BaseTracingConfig):
|
||||
"""
|
||||
Model class for Aliyun tracing config.
|
||||
"""
|
||||
|
||||
app_name: str = "dify_app"
|
||||
license_key: str
|
||||
endpoint: str
|
||||
|
||||
|
||||
OPS_FILE_PATH = "ops_trace/"
|
||||
OPS_TRACE_FAILED_KEY = "FAILED_OPS_TRACE"
|
||||
|
@@ -104,6 +104,17 @@ class OpsTraceProviderConfigMap(dict[str, dict[str, Any]]):
|
||||
"other_keys": ["project", "endpoint"],
|
||||
"trace_instance": ArizePhoenixDataTrace,
|
||||
}
|
||||
case TracingProviderEnum.ALIYUN:
|
||||
from core.ops.aliyun_trace.aliyun_trace import AliyunDataTrace
|
||||
from core.ops.entities.config_entity import AliyunConfig
|
||||
|
||||
return {
|
||||
"config_class": AliyunConfig,
|
||||
"secret_keys": ["license_key"],
|
||||
"other_keys": ["endpoint", "app_name"],
|
||||
"trace_instance": AliyunDataTrace,
|
||||
}
|
||||
|
||||
case _:
|
||||
raise KeyError(f"Unsupported tracing provider: {provider}")
|
||||
|
||||
|
Reference in New Issue
Block a user