text spliter length method use default embedding model tokenizer (#2011)

Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
Jyong
2024-01-12 18:45:34 +08:00
committed by GitHub
parent 1779cea6e3
commit a63a9c7d45
2 changed files with 69 additions and 24 deletions

View File

@@ -1,8 +1,10 @@
"""Functionality for splitting text."""
from __future__ import annotations
from typing import Any, List, Optional
from typing import Any, List, Optional, cast
from core.model_manager import ModelInstance
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
from langchain.text_splitter import (TS, AbstractSet, Collection, Literal, RecursiveCharacterTextSplitter,
TokenTextSplitter, Type, Union)
@@ -12,22 +14,30 @@ class EnhanceRecursiveCharacterTextSplitter(RecursiveCharacterTextSplitter):
"""
This class is used to implement from_gpt2_encoder, to prevent using of tiktoken
"""
@classmethod
def from_gpt2_encoder(
cls: Type[TS],
encoding_name: str = "gpt2",
model_name: Optional[str] = None,
allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
**kwargs: Any,
def from_encoder(
cls: Type[TS],
embedding_model_instance: Optional[ModelInstance],
allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
**kwargs: Any,
):
def _token_encoder(text: str) -> int:
return GPT2Tokenizer.get_num_tokens(text)
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
return embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
texts=[text]
)
else:
return GPT2Tokenizer.get_num_tokens(text)
if issubclass(cls, TokenTextSplitter):
extra_kwargs = {
"encoding_name": encoding_name,
"model_name": model_name,
"model_name": embedding_model_instance.model if embedding_model_instance else 'gpt2',
"allowed_special": allowed_special,
"disallowed_special": disallowed_special,
}
@@ -35,6 +45,7 @@ class EnhanceRecursiveCharacterTextSplitter(RecursiveCharacterTextSplitter):
return cls(length_function=_token_encoder, **kwargs)
class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter):
def __init__(self, fixed_separator: str = "\n\n", separators: Optional[List[str]] = None, **kwargs: Any):
"""Create a new TextSplitter."""
@@ -90,4 +101,4 @@ class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter)
if _good_splits:
merged_text = self._merge_splits(_good_splits, separator)
final_chunks.extend(merged_text)
return final_chunks
return final_chunks