fix(api/core/model_runtime/model_providers/baichuan,localai): Parse ToolPromptMessage. #4943 (#5138)
Co-authored-by: -LAN- <laipz8200@outlook.com>
This commit is contained in:
@@ -7,6 +7,7 @@ from core.model_runtime.entities.message_entities import (
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.errors.invoke import (
|
||||
@@ -38,14 +39,15 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
return self._generate(model=model, credentials=credentials, prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool] | None = None) -> int:
|
||||
return self._num_tokens_from_messages(prompt_messages)
|
||||
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage],) -> int:
|
||||
def _num_tokens_from_messages(self, messages: list[PromptMessage], ) -> int:
|
||||
"""Calculate num tokens for baichuan model"""
|
||||
|
||||
def tokens(text: str):
|
||||
return BaichuanTokenizer._get_num_tokens(text)
|
||||
|
||||
@@ -85,6 +87,17 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
# copy from core/model_runtime/model_providers/anthropic/llm/llm.py
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {
|
||||
"role": "user",
|
||||
"content": [{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": message.tool_call_id,
|
||||
"content": message.content
|
||||
}]
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
@@ -107,8 +120,8 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
raise CredentialsValidateFailedError(f"Invalid API key: {e}")
|
||||
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
if tools is not None and len(tools) > 0:
|
||||
raise InvokeBadRequestError("Baichuan model doesn't support tools")
|
||||
@@ -129,7 +142,8 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
]
|
||||
|
||||
# invoke model
|
||||
response = instance.generate(model=model, stream=stream, messages=messages, parameters=model_parameters, timeout=60)
|
||||
response = instance.generate(model=model, stream=stream, messages=messages, parameters=model_parameters,
|
||||
timeout=60)
|
||||
|
||||
if stream:
|
||||
return self._handle_chat_generate_stream_response(model, prompt_messages, credentials, response)
|
||||
@@ -141,7 +155,9 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
credentials: dict,
|
||||
response: BaichuanMessage) -> LLMResult:
|
||||
# convert baichuan message to llm result
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=response.usage['prompt_tokens'], completion_tokens=response.usage['completion_tokens'])
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=response.usage['prompt_tokens'],
|
||||
completion_tokens=response.usage['completion_tokens'])
|
||||
return LLMResult(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
@@ -158,7 +174,9 @@ class BaichuanLarguageModel(LargeLanguageModel):
|
||||
response: Generator[BaichuanMessage, None, None]) -> Generator:
|
||||
for message in response:
|
||||
if message.usage:
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=message.usage['prompt_tokens'], completion_tokens=message.usage['completion_tokens'])
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials,
|
||||
prompt_tokens=message.usage['prompt_tokens'],
|
||||
completion_tokens=message.usage['completion_tokens'])
|
||||
yield LLMResultChunk(
|
||||
model=model,
|
||||
prompt_messages=prompt_messages,
|
||||
|
@@ -27,6 +27,7 @@ from core.model_runtime.entities.message_entities import (
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
@@ -57,7 +58,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
return self._generate(model=model, credentials=credentials, prompt_messages=prompt_messages,
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
model_parameters=model_parameters, tools=tools, stop=stop, stream=stream, user=user)
|
||||
|
||||
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
tools: list[PromptMessageTool] | None = None) -> int:
|
||||
@@ -69,6 +70,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
Calculate num tokens for baichuan model
|
||||
LocalAI does not supports
|
||||
"""
|
||||
|
||||
def tokens(text: str):
|
||||
"""
|
||||
We cloud not determine which tokenizer to use, cause the model is customized.
|
||||
@@ -133,6 +135,7 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
:param tools: tools for tool calling
|
||||
:return: number of tokens
|
||||
"""
|
||||
|
||||
def tokens(text: str):
|
||||
return self._get_num_tokens_by_gpt2(text)
|
||||
|
||||
@@ -247,8 +250,8 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
return entity
|
||||
|
||||
def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
model_parameters: dict, tools: list[PromptMessageTool] | None = None,
|
||||
stop: list[str] | None = None, stream: bool = True, user: str | None = None) \
|
||||
-> LLMResult | Generator:
|
||||
|
||||
kwargs = self._to_client_kwargs(credentials)
|
||||
@@ -351,6 +354,17 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message = cast(SystemPromptMessage, message)
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
# copy from core/model_runtime/model_providers/anthropic/llm/llm.py
|
||||
message = cast(ToolPromptMessage, message)
|
||||
message_dict = {
|
||||
"role": "user",
|
||||
"content": [{
|
||||
"type": "tool_result",
|
||||
"tool_use_id": message.tool_call_id,
|
||||
"content": message.content
|
||||
}]
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown message type {type(message)}")
|
||||
|
||||
@@ -377,10 +391,10 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
return prompts
|
||||
|
||||
def _handle_completion_generate_response(self, model: str,
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Completion,
|
||||
) -> LLMResult:
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Completion,
|
||||
) -> LLMResult:
|
||||
"""
|
||||
Handle llm chat response
|
||||
|
||||
@@ -407,7 +421,8 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[assistant_prompt_message], tools=[])
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens)
|
||||
|
||||
response = LLMResult(
|
||||
model=model,
|
||||
@@ -452,7 +467,8 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
|
||||
completion_tokens = self._num_tokens_from_messages(messages=[assistant_prompt_message], tools=tools)
|
||||
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)
|
||||
usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens)
|
||||
|
||||
response = LLMResult(
|
||||
model=model,
|
||||
@@ -465,10 +481,10 @@ class LocalAILanguageModel(LargeLanguageModel):
|
||||
return response
|
||||
|
||||
def _handle_completion_generate_stream_response(self, model: str,
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Stream[Completion],
|
||||
tools: list[PromptMessageTool]) -> Generator:
|
||||
prompt_messages: list[PromptMessage],
|
||||
credentials: dict,
|
||||
response: Stream[Completion],
|
||||
tools: list[PromptMessageTool]) -> Generator:
|
||||
full_response = ''
|
||||
|
||||
for chunk in response:
|
||||
|
Reference in New Issue
Block a user