fix organize agent's history messages without recalculating tokens (#4324)

Co-authored-by: chenyongzhao <chenyz@mama.cn>
This commit is contained in:
zeroameli
2024-05-29 15:25:20 +08:00
committed by GitHub
parent 74f38eacda
commit afed3610fc
7 changed files with 219 additions and 40 deletions

View File

@@ -17,6 +17,7 @@ from core.model_runtime.entities.message_entities import (
ToolPromptMessage,
UserPromptMessage,
)
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message
@@ -24,21 +25,18 @@ from models.model import Message
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
def run(self,
message: Message, query: str, **kwargs: Any
) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
self.query = query
app_generate_entity = self.application_generate_entity
app_config = self.app_config
prompt_template = app_config.prompt_template.simple_prompt_template or ''
prompt_messages = self.history_prompt_messages
prompt_messages = self._init_system_message(prompt_template, prompt_messages)
prompt_messages = self._organize_user_query(query, prompt_messages)
# convert tools into ModelRuntime Tool format
tool_instances, prompt_messages_tools = self._init_prompt_tools()
@@ -81,6 +79,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
)
# recalc llm max tokens
prompt_messages = self._organize_prompt_messages()
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
@@ -203,7 +202,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
else:
assistant_message.content = response
prompt_messages.append(assistant_message)
self._current_thoughts.append(assistant_message)
# save thought
self.save_agent_thought(
@@ -265,12 +264,14 @@ class FunctionCallAgentRunner(BaseAgentRunner):
}
tool_responses.append(tool_response)
prompt_messages = self._organize_assistant_message(
tool_call_id=tool_call_id,
tool_call_name=tool_call_name,
tool_response=tool_response['tool_response'],
prompt_messages=prompt_messages,
)
if tool_response['tool_response'] is not None:
self._current_thoughts.append(
ToolPromptMessage(
content=tool_response['tool_response'],
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
if len(tool_responses) > 0:
# save agent thought
@@ -300,8 +301,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
iteration_step += 1
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
@@ -393,24 +392,6 @@ class FunctionCallAgentRunner(BaseAgentRunner):
return prompt_messages
def _organize_assistant_message(self, tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
"""
Organize assistant message
"""
prompt_messages = deepcopy(prompt_messages)
if tool_response is not None:
prompt_messages.append(
ToolPromptMessage(
content=tool_response,
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
return prompt_messages
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
As for now, gpt supports both fc and vision at the first iteration.
@@ -428,4 +409,26 @@ class FunctionCallAgentRunner(BaseAgentRunner):
for content in prompt_message.content
])
return prompt_messages
return prompt_messages
def _organize_prompt_messages(self):
prompt_template = self.app_config.prompt_template.simple_prompt_template or ''
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
query_prompt_messages = self._organize_user_query(self.query, [])
self.history_prompt_messages = AgentHistoryPromptTransform(
model_config=self.model_config,
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
history_messages=self.history_prompt_messages,
memory=self.memory
).get_prompt()
prompt_messages = [
*self.history_prompt_messages,
*query_prompt_messages,
*self._current_thoughts
]
if len(self._current_thoughts) != 0:
# clear messages after the first iteration
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
return prompt_messages