refactor: move the embedding to the rag module and abstract the rerank runner for extension (#9423)
This commit is contained in:
@@ -1,14 +1,14 @@
|
||||
from typing import Optional
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.rag.data_post_processor.reorder import ReorderRunner
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.constants.rerank_mode import RerankMode
|
||||
from core.rag.rerank.entity.weight import KeywordSetting, VectorSetting, Weights
|
||||
from core.rag.rerank.rerank_model import RerankModelRunner
|
||||
from core.rag.rerank.weight_rerank import WeightRerankRunner
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
from core.rag.rerank.rerank_factory import RerankRunnerFactory
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
|
||||
|
||||
class DataPostProcessor:
|
||||
@@ -47,11 +47,12 @@ class DataPostProcessor:
|
||||
tenant_id: str,
|
||||
reranking_model: Optional[dict] = None,
|
||||
weights: Optional[dict] = None,
|
||||
) -> Optional[RerankModelRunner | WeightRerankRunner]:
|
||||
) -> Optional[BaseRerankRunner]:
|
||||
if reranking_mode == RerankMode.WEIGHTED_SCORE.value and weights:
|
||||
return WeightRerankRunner(
|
||||
tenant_id,
|
||||
Weights(
|
||||
runner = RerankRunnerFactory.create_rerank_runner(
|
||||
runner_type=reranking_mode,
|
||||
tenant_id=tenant_id,
|
||||
weights=Weights(
|
||||
vector_setting=VectorSetting(
|
||||
vector_weight=weights["vector_setting"]["vector_weight"],
|
||||
embedding_provider_name=weights["vector_setting"]["embedding_provider_name"],
|
||||
@@ -62,23 +63,33 @@ class DataPostProcessor:
|
||||
),
|
||||
),
|
||||
)
|
||||
return runner
|
||||
elif reranking_mode == RerankMode.RERANKING_MODEL.value:
|
||||
if reranking_model:
|
||||
try:
|
||||
model_manager = ModelManager()
|
||||
rerank_model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
provider=reranking_model["reranking_provider_name"],
|
||||
model_type=ModelType.RERANK,
|
||||
model=reranking_model["reranking_model_name"],
|
||||
)
|
||||
except InvokeAuthorizationError:
|
||||
return None
|
||||
return RerankModelRunner(rerank_model_instance)
|
||||
return None
|
||||
rerank_model_instance = self._get_rerank_model_instance(tenant_id, reranking_model)
|
||||
if rerank_model_instance is None:
|
||||
return None
|
||||
runner = RerankRunnerFactory.create_rerank_runner(
|
||||
runner_type=reranking_mode, rerank_model_instance=rerank_model_instance
|
||||
)
|
||||
return runner
|
||||
return None
|
||||
|
||||
def _get_reorder_runner(self, reorder_enabled) -> Optional[ReorderRunner]:
|
||||
if reorder_enabled:
|
||||
return ReorderRunner()
|
||||
return None
|
||||
|
||||
def _get_rerank_model_instance(self, tenant_id: str, reranking_model: Optional[dict]) -> ModelInstance | None:
|
||||
if reranking_model:
|
||||
try:
|
||||
model_manager = ModelManager()
|
||||
rerank_model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
provider=reranking_model["reranking_provider_name"],
|
||||
model_type=ModelType.RERANK,
|
||||
model=reranking_model["reranking_model_name"],
|
||||
)
|
||||
return rerank_model_instance
|
||||
except InvokeAuthorizationError:
|
||||
return None
|
||||
return None
|
||||
|
@@ -6,7 +6,7 @@ from flask import Flask, current_app
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.rerank.constants.rerank_mode import RerankMode
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset
|
||||
|
@@ -9,10 +9,10 @@ _import_err_msg = (
|
||||
)
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -12,10 +12,10 @@ from pymochow.model.schema import Field, HNSWParams, Schema, VectorIndex
|
||||
from pymochow.model.table import AnnSearch, HNSWSearchParams, Partition, Row
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -6,10 +6,10 @@ from chromadb import QueryResult, Settings
|
||||
from pydantic import BaseModel
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -9,11 +9,11 @@ from elasticsearch import Elasticsearch
|
||||
from flask import current_app
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -7,11 +7,11 @@ from pymilvus import MilvusClient, MilvusException
|
||||
from pymilvus.milvus_client import IndexParams
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -8,10 +8,10 @@ from clickhouse_connect import get_client
|
||||
from pydantic import BaseModel
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
@@ -9,11 +9,11 @@ from opensearchpy.helpers import BulkIndexError
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -13,10 +13,10 @@ from nltk.corpus import stopwords
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -12,11 +12,11 @@ from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy.orm import Mapped, Session, mapped_column
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.pgvecto_rs.collection import CollectionORM
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -8,10 +8,10 @@ import psycopg2.pool
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -20,11 +20,11 @@ from qdrant_client.http.models import (
|
||||
from qdrant_client.local.qdrant_local import QdrantLocal
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
|
@@ -8,9 +8,9 @@ from sqlalchemy import text as sql_text
|
||||
from sqlalchemy.dialects.postgresql import JSON, TEXT
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from models.dataset import Dataset
|
||||
|
||||
try:
|
||||
|
@@ -8,10 +8,10 @@ from tcvectordb.model import index as vdb_index
|
||||
from tcvectordb.model.document import Filter
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -9,10 +9,10 @@ from sqlalchemy import text as sql_text
|
||||
from sqlalchemy.orm import Session, declarative_base
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -2,12 +2,12 @@ from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
|
||||
from configs import dify_config
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.cached_embedding import CacheEmbedding
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -14,11 +14,11 @@ from volcengine.viking_db import (
|
||||
)
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field as vdb_Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
@@ -7,11 +7,11 @@ import weaviate
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
0
api/core/rag/embedding/__init__.py
Normal file
0
api/core/rag/embedding/__init__.py
Normal file
132
api/core/rag/embedding/cached_embedding.py
Normal file
132
api/core/rag/embedding/cached_embedding.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import base64
|
||||
import logging
|
||||
from typing import Optional, cast
|
||||
|
||||
import numpy as np
|
||||
from sqlalchemy.exc import IntegrityError
|
||||
|
||||
from configs import dify_config
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs import helper
|
||||
from models.dataset import Embedding
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CacheEmbedding(Embeddings):
|
||||
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
|
||||
self._model_instance = model_instance
|
||||
self._user = user
|
||||
|
||||
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Embed search docs in batches of 10."""
|
||||
# use doc embedding cache or store if not exists
|
||||
text_embeddings = [None for _ in range(len(texts))]
|
||||
embedding_queue_indices = []
|
||||
for i, text in enumerate(texts):
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding = (
|
||||
db.session.query(Embedding)
|
||||
.filter_by(
|
||||
model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
|
||||
)
|
||||
.first()
|
||||
)
|
||||
if embedding:
|
||||
text_embeddings[i] = embedding.get_embedding()
|
||||
else:
|
||||
embedding_queue_indices.append(i)
|
||||
if embedding_queue_indices:
|
||||
embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
|
||||
embedding_queue_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(
|
||||
self._model_instance.model, self._model_instance.credentials
|
||||
)
|
||||
max_chunks = (
|
||||
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
|
||||
else 1
|
||||
)
|
||||
for i in range(0, len(embedding_queue_texts), max_chunks):
|
||||
batch_texts = embedding_queue_texts[i : i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
|
||||
)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
||||
embedding_queue_embeddings.append(normalized_embedding)
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception("Failed transform embedding: %s", e)
|
||||
cache_embeddings = []
|
||||
try:
|
||||
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
text_embeddings[i] = embedding
|
||||
hash = helper.generate_text_hash(texts[i])
|
||||
if hash not in cache_embeddings:
|
||||
embedding_cache = Embedding(
|
||||
model_name=self._model_instance.model,
|
||||
hash=hash,
|
||||
provider_name=self._model_instance.provider,
|
||||
)
|
||||
embedding_cache.set_embedding(embedding)
|
||||
db.session.add(embedding_cache)
|
||||
cache_embeddings.append(hash)
|
||||
db.session.commit()
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.error("Failed to embed documents: %s", ex)
|
||||
raise ex
|
||||
|
||||
return text_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Embed query text."""
|
||||
# use doc embedding cache or store if not exists
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
|
||||
embedding = redis_client.get(embedding_cache_key)
|
||||
if embedding:
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
|
||||
)
|
||||
|
||||
embedding_results = embedding_result.embeddings[0]
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logging.exception(f"Failed to embed query text: {ex}")
|
||||
raise ex
|
||||
|
||||
try:
|
||||
# encode embedding to base64
|
||||
embedding_vector = np.array(embedding_results)
|
||||
vector_bytes = embedding_vector.tobytes()
|
||||
# Transform to Base64
|
||||
encoded_vector = base64.b64encode(vector_bytes)
|
||||
# Transform to string
|
||||
encoded_str = encoded_vector.decode("utf-8")
|
||||
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logging.exception("Failed to add embedding to redis %s", ex)
|
||||
raise ex
|
||||
|
||||
return embedding_results
|
@@ -7,10 +7,12 @@ class Embeddings(ABC):
|
||||
@abstractmethod
|
||||
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Embed search docs."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Embed query text."""
|
||||
raise NotImplementedError
|
||||
|
||||
async def aembed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Asynchronous Embed search docs."""
|
26
api/core/rag/rerank/rerank_base.py
Normal file
26
api/core/rag/rerank/rerank_base.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.models.document import Document
|
||||
|
||||
|
||||
class BaseRerankRunner(ABC):
|
||||
@abstractmethod
|
||||
def run(
|
||||
self,
|
||||
query: str,
|
||||
documents: list[Document],
|
||||
score_threshold: Optional[float] = None,
|
||||
top_n: Optional[int] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Run rerank model
|
||||
:param query: search query
|
||||
:param documents: documents for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id if needed
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
16
api/core/rag/rerank/rerank_factory.py
Normal file
16
api/core/rag/rerank/rerank_factory.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
from core.rag.rerank.rerank_model import RerankModelRunner
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.rerank.weight_rerank import WeightRerankRunner
|
||||
|
||||
|
||||
class RerankRunnerFactory:
|
||||
@staticmethod
|
||||
def create_rerank_runner(runner_type: str, *args, **kwargs) -> BaseRerankRunner:
|
||||
match runner_type:
|
||||
case RerankMode.RERANKING_MODEL.value:
|
||||
return RerankModelRunner(*args, **kwargs)
|
||||
case RerankMode.WEIGHTED_SCORE.value:
|
||||
return WeightRerankRunner(*args, **kwargs)
|
||||
case _:
|
||||
raise ValueError(f"Unknown runner type: {runner_type}")
|
@@ -2,9 +2,10 @@ from typing import Optional
|
||||
|
||||
from core.model_manager import ModelInstance
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
|
||||
|
||||
class RerankModelRunner:
|
||||
class RerankModelRunner(BaseRerankRunner):
|
||||
def __init__(self, rerank_model_instance: ModelInstance) -> None:
|
||||
self.rerank_model_instance = rerank_model_instance
|
||||
|
||||
|
@@ -4,15 +4,16 @@ from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from core.embedding.cached_embedding import CacheEmbedding
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
||||
from core.rag.embedding.cached_embedding import CacheEmbedding
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.entity.weight import VectorSetting, Weights
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
|
||||
|
||||
class WeightRerankRunner:
|
||||
class WeightRerankRunner(BaseRerankRunner):
|
||||
def __init__(self, tenant_id: str, weights: Weights) -> None:
|
||||
self.tenant_id = tenant_id
|
||||
self.weights = weights
|
||||
|
Reference in New Issue
Block a user