feat: add xAI model provider (#10272)
This commit is contained in:
@@ -95,3 +95,7 @@ GPUSTACK_API_KEY=
|
||||
|
||||
# Gitee AI Credentials
|
||||
GITEE_AI_API_KEY=
|
||||
|
||||
# xAI Credentials
|
||||
XAI_API_KEY=
|
||||
XAI_API_BASE=
|
||||
|
204
api/tests/integration_tests/model_runtime/x/test_llm.py
Normal file
204
api/tests/integration_tests/model_runtime/x/test_llm.py
Normal file
@@ -0,0 +1,204 @@
|
||||
import os
|
||||
from collections.abc import Generator
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel
|
||||
|
||||
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
|
||||
def test_predefined_models():
|
||||
model = XAILargeLanguageModel()
|
||||
model_schemas = model.predefined_models()
|
||||
|
||||
assert len(model_schemas) >= 1
|
||||
assert isinstance(model_schemas[0], AIModelEntity)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_validate_credentials_for_chat_model(setup_openai_mock):
|
||||
model = XAILargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
# model name to gpt-3.5-turbo because of mocking
|
||||
model.validate_credentials(
|
||||
model="gpt-3.5-turbo",
|
||||
credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"},
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model="grok-beta",
|
||||
credentials={
|
||||
"api_key": os.environ.get("XAI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_invoke_chat_model(setup_openai_mock):
|
||||
model = XAILargeLanguageModel()
|
||||
|
||||
result = model.invoke(
|
||||
model="grok-beta",
|
||||
credentials={
|
||||
"api_key": os.environ.get("XAI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Hello World!"),
|
||||
],
|
||||
model_parameters={
|
||||
"temperature": 0.0,
|
||||
"top_p": 1.0,
|
||||
"presence_penalty": 0.0,
|
||||
"frequency_penalty": 0.0,
|
||||
"max_tokens": 10,
|
||||
},
|
||||
stop=["How"],
|
||||
stream=False,
|
||||
user="foo",
|
||||
)
|
||||
|
||||
assert isinstance(result, LLMResult)
|
||||
assert len(result.message.content) > 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_invoke_chat_model_with_tools(setup_openai_mock):
|
||||
model = XAILargeLanguageModel()
|
||||
|
||||
result = model.invoke(
|
||||
model="grok-beta",
|
||||
credentials={
|
||||
"api_key": os.environ.get("XAI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(
|
||||
content="what's the weather today in London?",
|
||||
),
|
||||
],
|
||||
model_parameters={"temperature": 0.0, "max_tokens": 100},
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name="get_weather",
|
||||
description="Determine weather in my location",
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
|
||||
"unit": {"type": "string", "enum": ["c", "f"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
),
|
||||
PromptMessageTool(
|
||||
name="get_stock_price",
|
||||
description="Get the current stock price",
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {"symbol": {"type": "string", "description": "The stock symbol"}},
|
||||
"required": ["symbol"],
|
||||
},
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
user="foo",
|
||||
)
|
||||
|
||||
assert isinstance(result, LLMResult)
|
||||
assert isinstance(result.message, AssistantPromptMessage)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
||||
def test_invoke_stream_chat_model(setup_openai_mock):
|
||||
model = XAILargeLanguageModel()
|
||||
|
||||
result = model.invoke(
|
||||
model="grok-beta",
|
||||
credentials={
|
||||
"api_key": os.environ.get("XAI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("XAI_API_BASE"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Hello World!"),
|
||||
],
|
||||
model_parameters={"temperature": 0.0, "max_tokens": 100},
|
||||
stream=True,
|
||||
user="foo",
|
||||
)
|
||||
|
||||
assert isinstance(result, Generator)
|
||||
|
||||
for chunk in result:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
if chunk.delta.finish_reason is not None:
|
||||
assert chunk.delta.usage is not None
|
||||
assert chunk.delta.usage.completion_tokens > 0
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = XAILargeLanguageModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model="grok-beta",
|
||||
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
|
||||
prompt_messages=[UserPromptMessage(content="Hello World!")],
|
||||
)
|
||||
|
||||
assert num_tokens == 10
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model="grok-beta",
|
||||
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Hello World!"),
|
||||
],
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name="get_weather",
|
||||
description="Determine weather in my location",
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
|
||||
"unit": {"type": "string", "enum": ["c", "f"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
assert num_tokens == 77
|
Reference in New Issue
Block a user