chore: extract retrival method literal values into enum (#5060)

This commit is contained in:
Bowen Liang
2024-06-19 16:05:27 +08:00
committed by GitHub
parent 9d5a89eab6
commit c923684edd
10 changed files with 47 additions and 19 deletions

View File

@@ -17,6 +17,7 @@ from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.retrieval.retrival_methods import RetrievalMethod
from extensions.ext_database import db
from fields.app_fields import related_app_list
from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
@@ -500,13 +501,15 @@ class DatasetRetrievalSettingApi(Resource):
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT:
return {
'retrieval_method': [
'semantic_search'
RetrievalMethod.SEMANTIC_SEARCH
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
return {
'retrieval_method': [
'semantic_search', 'full_text_search', 'hybrid_search'
RetrievalMethod.SEMANTIC_SEARCH,
RetrievalMethod.FULL_TEXT_SEARCH,
RetrievalMethod.HYBRID_SEARCH,
]
}
case _:
@@ -522,13 +525,15 @@ class DatasetRetrievalSettingMockApi(Resource):
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCEN:
return {
'retrieval_method': [
'semantic_search'
RetrievalMethod.SEMANTIC_SEARCH
]
}
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
return {
'retrieval_method': [
'semantic_search', 'full_text_search', 'hybrid_search'
RetrievalMethod.SEMANTIC_SEARCH,
RetrievalMethod.FULL_TEXT_SEARCH,
RetrievalMethod.HYBRID_SEARCH,
]
}
case _:

View File

@@ -6,11 +6,12 @@ from flask import Flask, current_app
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.retrieval.retrival_methods import RetrievalMethod
from extensions.ext_database import db
from models.dataset import Dataset
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
@@ -47,7 +48,7 @@ class RetrievalService:
threads.append(keyword_thread)
keyword_thread.start()
# retrieval_model source with semantic
if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
if RetrievalMethod.is_support_semantic_search(retrival_method):
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': dataset_id,
@@ -63,7 +64,7 @@ class RetrievalService:
embedding_thread.start()
# retrieval source with full text
if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
if RetrievalMethod.is_support_fulltext_search(retrival_method):
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
'flask_app': current_app._get_current_object(),
'dataset_id': dataset_id,
@@ -85,7 +86,7 @@ class RetrievalService:
exception_message = ';\n'.join(exceptions)
raise Exception(exception_message)
if retrival_method == 'hybrid_search':
if retrival_method == RetrievalMethod.HYBRID_SEARCH:
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
all_documents = data_post_processor.invoke(
query=query,
@@ -141,7 +142,7 @@ class RetrievalService:
)
if documents:
if reranking_model and retrival_method == 'semantic_search':
if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH:
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
all_documents.extend(data_post_processor.invoke(
query=query,
@@ -173,7 +174,7 @@ class RetrievalService:
top_k=top_k
)
if documents:
if reranking_model and retrival_method == 'full_text_search':
if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH:
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
all_documents.extend(data_post_processor.invoke(
query=query,

View File

@@ -15,6 +15,7 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.models.document import Document
from core.rag.rerank.rerank import RerankRunner
from core.rag.retrieval.retrival_methods import RetrievalMethod
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
@@ -25,7 +26,7 @@ from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
@@ -419,7 +420,7 @@ class DatasetRetrieval:
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
# get retrieval model config
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',

View File

@@ -0,0 +1,15 @@
from enum import Enum
class RetrievalMethod(str, Enum):
SEMANTIC_SEARCH = 'semantic_search'
FULL_TEXT_SEARCH = 'full_text_search'
HYBRID_SEARCH = 'hybrid_search'
@staticmethod
def is_support_semantic_search(retrieval_method: str) -> bool:
return retrieval_method in {RetrievalMethod.SEMANTIC_SEARCH, RetrievalMethod.HYBRID_SEARCH}
@staticmethod
def is_support_fulltext_search(retrieval_method: str) -> bool:
return retrieval_method in {RetrievalMethod.FULL_TEXT_SEARCH, RetrievalMethod.HYBRID_SEARCH}

View File

@@ -8,12 +8,13 @@ from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.rerank.rerank import RerankRunner
from core.rag.retrieval.retrival_methods import RetrievalMethod
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',

View File

@@ -2,12 +2,13 @@
from pydantic import BaseModel, Field
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.retrieval.retrival_methods import RetrievalMethod
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',

View File

@@ -11,6 +11,7 @@ from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
from core.rag.retrieval.retrival_methods import RetrievalMethod
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeRunResult, NodeType
from core.workflow.entities.variable_pool import VariablePool
@@ -21,7 +22,7 @@ from models.dataset import Dataset, Document, DocumentSegment
from models.workflow import WorkflowNodeExecutionStatus
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',

View File

@@ -13,6 +13,7 @@ from flask import current_app
from sqlalchemy import func
from sqlalchemy.dialects.postgresql import JSONB
from core.rag.retrieval.retrival_methods import RetrievalMethod
from extensions.ext_database import db
from extensions.ext_storage import storage
from models import StringUUID
@@ -116,7 +117,7 @@ class Dataset(db.Model):
@property
def retrieval_model_dict(self):
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',

View File

@@ -15,6 +15,7 @@ from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.models.document import Document as RAGDocument
from core.rag.retrieval.retrival_methods import RetrievalMethod
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
@@ -602,7 +603,7 @@ class DocumentService:
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
@@ -959,7 +960,7 @@ class DocumentService:
retrieval_model = document_data['retrieval_model']
else:
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',

View File

@@ -10,12 +10,13 @@ from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.models.document import Document
from core.rag.retrieval.retrival_methods import RetrievalMethod
from extensions.ext_database import db
from models.account import Account
from models.dataset import Dataset, DatasetQuery, DocumentSegment
default_retrieval_model = {
'search_method': 'semantic_search',
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',