feat: support Chroma vector store (#5015)
This commit is contained in:
0
api/core/rag/datasource/vdb/chroma/__init__.py
Normal file
0
api/core/rag/datasource/vdb/chroma/__init__.py
Normal file
147
api/core/rag/datasource/vdb/chroma/chroma_vector.py
Normal file
147
api/core/rag/datasource/vdb/chroma/chroma_vector.py
Normal file
@@ -0,0 +1,147 @@
|
||||
import json
|
||||
from typing import Any, Optional
|
||||
|
||||
import chromadb
|
||||
from chromadb import QueryResult, Settings
|
||||
from flask import current_app
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class ChromaConfig(BaseModel):
|
||||
host: str
|
||||
port: int
|
||||
tenant: str
|
||||
database: str
|
||||
auth_provider: Optional[str] = None
|
||||
auth_credentials: Optional[str] = None
|
||||
|
||||
def to_chroma_params(self):
|
||||
settings = Settings(
|
||||
# auth
|
||||
chroma_client_auth_provider=self.auth_provider,
|
||||
chroma_client_auth_credentials=self.auth_credentials
|
||||
)
|
||||
|
||||
return {
|
||||
'host': self.host,
|
||||
'port': self.port,
|
||||
'ssl': False,
|
||||
'tenant': self.tenant,
|
||||
'database': self.database,
|
||||
'settings': settings,
|
||||
}
|
||||
|
||||
|
||||
class ChromaVector(BaseVector):
|
||||
|
||||
def __init__(self, collection_name: str, config: ChromaConfig):
|
||||
super().__init__(collection_name)
|
||||
self._client_config = config
|
||||
self._client = chromadb.HttpClient(**self._client_config.to_chroma_params())
|
||||
|
||||
def get_type(self) -> str:
|
||||
return VectorType.CHROMA
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
if texts:
|
||||
# create collection
|
||||
self.create_collection(self._collection_name)
|
||||
|
||||
self.add_texts(texts, embeddings, **kwargs)
|
||||
|
||||
def create_collection(self, collection_name: str):
|
||||
lock_name = 'vector_indexing_lock_{}'.format(collection_name)
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name)
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
return
|
||||
self._client.get_or_create_collection(collection_name)
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
uuids = self._get_uuids(documents)
|
||||
texts = [d.page_content for d in documents]
|
||||
metadatas = [d.metadata for d in documents]
|
||||
|
||||
collection = self._client.get_or_create_collection(self._collection_name)
|
||||
collection.upsert(ids=uuids, documents=texts, embeddings=embeddings, metadatas=metadatas)
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str):
|
||||
collection = self._client.get_or_create_collection(self._collection_name)
|
||||
collection.delete(where={key: {'$eq': value}})
|
||||
|
||||
def delete(self):
|
||||
self._client.delete_collection(self._collection_name)
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
collection = self._client.get_or_create_collection(self._collection_name)
|
||||
collection.delete(ids=ids)
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
collection = self._client.get_or_create_collection(self._collection_name)
|
||||
response = collection.get(ids=[id])
|
||||
return len(response) > 0
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
collection = self._client.get_or_create_collection(self._collection_name)
|
||||
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
|
||||
score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0
|
||||
|
||||
ids: list[str] = results['ids'][0]
|
||||
documents: list[str] = results['documents'][0]
|
||||
metadatas: dict[str, Any] = results['metadatas'][0]
|
||||
distances: list[float] = results['distances'][0]
|
||||
|
||||
docs = []
|
||||
for index in range(len(ids)):
|
||||
distance = distances[index]
|
||||
metadata = metadatas[index]
|
||||
if distance >= score_threshold:
|
||||
metadata['score'] = distance
|
||||
doc = Document(
|
||||
page_content=documents[index],
|
||||
metadata=metadata,
|
||||
)
|
||||
docs.append(doc)
|
||||
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
# chroma does not support BM25 full text searching
|
||||
return []
|
||||
|
||||
|
||||
class ChromaVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaseVector:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
collection_name = class_prefix.lower()
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
index_struct_dict = {
|
||||
"type": VectorType.CHROMA,
|
||||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
|
||||
config = current_app.config
|
||||
return ChromaVector(
|
||||
collection_name=collection_name,
|
||||
config=ChromaConfig(
|
||||
host=config.get('CHROMA_HOST'),
|
||||
port=int(config.get('CHROMA_PORT')),
|
||||
tenant=config.get('CHROMA_TENANT', chromadb.DEFAULT_TENANT),
|
||||
database=config.get('CHROMA_DATABASE', chromadb.DEFAULT_DATABASE),
|
||||
auth_provider=config.get('CHROMA_AUTH_PROVIDER'),
|
||||
auth_credentials=config.get('CHROMA_AUTH_CREDENTIALS'),
|
||||
),
|
||||
)
|
@@ -52,6 +52,9 @@ class Vector:
|
||||
@staticmethod
|
||||
def get_vector_factory(vector_type: str) -> type[AbstractVectorFactory]:
|
||||
match vector_type:
|
||||
case VectorType.CHROMA:
|
||||
from core.rag.datasource.vdb.chroma.chroma_vector import ChromaVectorFactory
|
||||
return ChromaVectorFactory
|
||||
case VectorType.MILVUS:
|
||||
from core.rag.datasource.vdb.milvus.milvus_vector import MilvusVectorFactory
|
||||
return MilvusVectorFactory
|
||||
|
@@ -2,6 +2,7 @@ from enum import Enum
|
||||
|
||||
|
||||
class VectorType(str, Enum):
|
||||
CHROMA = 'chroma'
|
||||
MILVUS = 'milvus'
|
||||
PGVECTOR = 'pgvector'
|
||||
PGVECTO_RS = 'pgvecto-rs'
|
||||
|
Reference in New Issue
Block a user