Model Runtime (#1858)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com> Co-authored-by: Garfield Dai <dai.hai@foxmail.com> Co-authored-by: chenhe <guchenhe@gmail.com> Co-authored-by: jyong <jyong@dify.ai> Co-authored-by: Joel <iamjoel007@gmail.com> Co-authored-by: Yeuoly <admin@srmxy.cn>
This commit is contained in:
287
api/tests/integration_tests/model_runtime/chatglm/test_llm.py
Normal file
287
api/tests/integration_tests/model_runtime/chatglm/test_llm.py
Normal file
@@ -0,0 +1,287 @@
|
||||
import os
|
||||
import pytest
|
||||
|
||||
from typing import Generator
|
||||
|
||||
from core.model_runtime.entities.message_entities import AssistantPromptMessage, TextPromptMessageContent, UserPromptMessage, \
|
||||
SystemPromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunkDelta, \
|
||||
LLMResultChunk
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
|
||||
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
def test_predefined_models():
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
model_schemas = model.predefined_models()
|
||||
assert len(model_schemas) >= 1
|
||||
assert isinstance(model_schemas[0], AIModelEntity)
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_validate_credentials_for_chat_model(setup_openai_mock):
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model='chatglm2-6b',
|
||||
credentials={
|
||||
'api_base': 'invalid_key'
|
||||
}
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model='chatglm2-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
}
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_model(setup_openai_mock):
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='chatglm2-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.7,
|
||||
'top_p': 1.0,
|
||||
},
|
||||
stop=['you'],
|
||||
user="abc-123",
|
||||
stream=False
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
assert response.usage.total_tokens > 0
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_stream_model(setup_openai_mock):
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='chatglm2-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.7,
|
||||
'top_p': 1.0,
|
||||
},
|
||||
stop=['you'],
|
||||
stream=True,
|
||||
user="abc-123"
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_stream_model_with_functions(setup_openai_mock):
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='chatglm3-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。'
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='波士顿天气如何?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0,
|
||||
'top_p': 1.0,
|
||||
},
|
||||
stop=['you'],
|
||||
user='abc-123',
|
||||
stream=True,
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name='get_current_weather',
|
||||
description='Get the current weather in a given location',
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state e.g. San Francisco, CA"
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"location"
|
||||
]
|
||||
}
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
|
||||
call: LLMResultChunk = None
|
||||
chunks = []
|
||||
|
||||
for chunk in response:
|
||||
chunks.append(chunk)
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
||||
|
||||
if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
|
||||
call = chunk
|
||||
break
|
||||
|
||||
assert call is not None
|
||||
assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_invoke_model_with_functions(setup_openai_mock):
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model='chatglm3-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
},
|
||||
prompt_messages=[
|
||||
UserPromptMessage(
|
||||
content='What is the weather like in San Francisco?'
|
||||
)
|
||||
],
|
||||
model_parameters={
|
||||
'temperature': 0.7,
|
||||
'top_p': 1.0,
|
||||
},
|
||||
stop=['you'],
|
||||
user='abc-123',
|
||||
stream=False,
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name='get_current_weather',
|
||||
description='Get the current weather in a given location',
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state e.g. San Francisco, CA"
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"c",
|
||||
"f"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"location"
|
||||
]
|
||||
}
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
assert response.usage.total_tokens > 0
|
||||
assert response.message.tool_calls[0].function.name == 'get_current_weather'
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = ChatGLMLargeLanguageModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='chatglm2-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
tools=[
|
||||
PromptMessageTool(
|
||||
name='get_current_weather',
|
||||
description='Get the current weather in a given location',
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state e.g. San Francisco, CA"
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"c",
|
||||
"f"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"location"
|
||||
]
|
||||
}
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
assert isinstance(num_tokens, int)
|
||||
assert num_tokens == 77
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model='chatglm2-6b',
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content='You are a helpful AI assistant.',
|
||||
),
|
||||
UserPromptMessage(
|
||||
content='Hello World!'
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
assert isinstance(num_tokens, int)
|
||||
assert num_tokens == 21
|
@@ -0,0 +1,25 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.chatglm.chatglm import ChatGLMProvider
|
||||
|
||||
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
||||
|
||||
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
|
||||
def test_validate_provider_credentials(setup_openai_mock):
|
||||
provider = ChatGLMProvider()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
provider.validate_provider_credentials(
|
||||
credentials={
|
||||
'api_base': 'hahahaha'
|
||||
}
|
||||
)
|
||||
|
||||
provider.validate_provider_credentials(
|
||||
credentials={
|
||||
'api_base': os.environ.get('CHATGLM_API_BASE')
|
||||
}
|
||||
)
|
Reference in New Issue
Block a user